
Machine Programming
Lecture 11 – Agentic Frameworks for Software Development (2)

Ziyang Li

Logistics – Week 6

• Assignment 2
• https://github.com/machine-programming/assignment-2
• Due this Sunday (Oct 5th)
• Expected to take quite some time, so please start working on it early

• Oral presentation sign up sheet
• Sending out today
• Oral presentation starting on Week 8

https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2

The Course So Far
Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?

Synthesis Strategy
- How do we find such a program?

1. Examples
2. Types
3. Functional Specifications
4. Natural Language

General Purpose Programming Language
Python / Java / C / Rust / …

Enumeration
Language Models
- Prompting
- Iterative refinement
- Agentic frameworks

Domain Specific Languages

Agentic Pipelines

• Agent holds the responsibility to
• Send requests to LLM
• Keep a history of dialogue
• Invoke the tools and format the feedback

Agent

Language
Model

Agent

Language
Model

Agent

Language
Model

Agent

Language
Model

…

Agent

Language
Model

🛠

User

USER

LLM

ß User

Agentic Framework

Environment

User

Agent

LM

Tool

Sequential Thinking Tool
• thought (string)

• the current step you want to record

• nextThoughtNeeded (boolean)
• whether you intend to add another step

• thoughtNumber (int ≥1)
• index of this step

• totalThoughts (int ≥1)
• your current plan for how many steps you’ll need

Environment

User

Agent

LM

Tool

Write me an OCaml function add : …
1

The user wants to write a function in
OCaml. Here are the available tools:
[…, {“name”: “sequentialthinking”}]

2

{“tool_name”: “sequentialthinking”,
 “args”: {“thought”: “I need to
 look at OCaml documentations”}

3

(call the tool)
4

(saves the thought)
5

https://github.com/modelcontextprotocol/servers/blob/main/src/sequentialthinking

https://github.com/modelcontextprotocol/servers/blob/main/src/sequentialthinking

File System (FS) Tool

• Create, read, write, or edit files

Environment

User

Agent

LM

Tool

/my_project
- readme.md
- .gitignore
- src/

- parity.py

Write me a Python function parity : …
1

Here are the available file operations:
[…, {“name”: “filesystem.writeFile”},

{“name”: “filesystem.editFile”}]

2

{ "name": "filesystem.writeFile",
 "arguments": {
 "path": ”src/parity.py",
 "content": "def parity(x):
 return x % 2 == 0"
 } }

3

(call the tool)
4

(writes to the file)
5 (new file is created)

6

{“success”: true}
7

RAG Database as Tool

• Vector database as environment:
• Each document 𝑧 in the database is

associated with an embedding 𝑑(𝑧)
• Querying: embedding-based similarity search

• Assume query 𝑥, query embedding is 𝑞(𝑥)
• Similarity score is cosine similarity

between 𝑞(𝑥) and 𝑑(𝑧):

• We can add, update, or remove documents
using document metadata

Environment

User

Agent

LM

Tool

sim 𝑥, 𝑧 =
𝑞 𝑥 ⋅ 𝑑(𝑧)
𝑞(𝑥) ⋅ 𝑑(𝑧)

Write me a Dafny function Max : …
1

Dafny database
Documentations

Tutorials
Sample programs

0

Here are the available tools:
[…, {“name”: “chroma.query”}, …]

2

“chroma.query”: { "collection": "dafny-docs",
 "query": "Dafny function vs method, ensures,
returns syntax examples",
 "top_k": 3,
 "where": { "source": "docs|tutorials" } }

3

(call the tool)
4

Convert
query to
𝑞(𝑥)

5

{𝑑(𝑧!), 𝑑(𝑧"), … }

Retrieves
top-3 similar
documents

6

Here are the retrieved documents: [[
 "Functions are pure: 'function
Max(a:int,b:int):int ensures ...' Example: function
Abs(x:int):int ensures result>=0",
 "Methods: 'method M(...) returns (...)' use
ensures on methods; assertions with 'assert'",
 "Spec grammar for ensures/returns; using 'result'
in postconditions"
]],

7

function Max(a:int, b:int): int
 ensures result >= a && result >= b &&
 (result == a || result == b) {
 if a >= b then a else b
}

8

Topics of Today

• More tools for agentic systems:
• Terminal as a tool
• Language servers as tools

• Other topics of agentic systems
• Tool selection problem
• Interactive programming
• Context management
• Security of agentic systems

Terminal as Tool

• Usage
• Running compilers: gcc foo.c à syntax/type errors
• Running programs: python foo.c à runtime errors
• Running tests: pytest à test cases pass/fail
• Managing packages: pip (Python), cargo (Rust), npm (JavaScript)
• Processing files: cat (read), grep/find (search), sed (edit), echo (file write)
• Managing folders and directories: cd (go to dir), ls (list items in dir)

• Interaction
• Input: command (string)
• Output: stdout / stderr (string), exit code (integer)

Terminal as Tool

Environment
(Shell, Linux)

User

Agent

LM

Tool

bash>

Terminal as Tool

Environment
(Shell, Linux)

User

Agent

LM

Tool

bash>

Write me a Python function parity : …
1

Terminal as Tool

Environment
(Shell, Linux)

User

Agent

LM

Tool

bash>

Write me a Python function parity : …
1

Here are the available file operations:
[…, {“name”: “terminal.execute”},
{“name”: “filesystem.writeFile”}]

2

Terminal as Tool

Environment
(Shell, Linux)

User

Agent

LM

Tool

bash>

Write me a Python function parity : …
1

Here are the available file operations:
[…, {“name”: “terminal.execute”},
{“name”: “filesystem.writeFile”}]

2 …

Terminal as Tool

Environment
(Shell, Linux)

User

Agent

LM

Tool

bash>

Write me a Python function parity : …
1

Here are the available file operations:
[…, {“name”: “terminal.execute”},
{“name”: “filesystem.writeFile”}]

2

{ "name": ”terminal.execute",
 "arguments": {
 ”cmd": ”python test_parity.py"
 } }

6
After writing the test case with the file system…

Terminal as Tool

Environment
(Shell, Linux)

User

Agent

LM

Tool

bash>

Write me a Python function parity : …
1

Here are the available file operations:
[…, {“name”: “terminal.execute”},
{“name”: “filesystem.writeFile”}]

2

{ "name": ”terminal.execute",
 "arguments": {
 ”cmd": ”python test_parity.py"
 } }

6
After writing the test case with the file system…

(call the tool)
7

Terminal as Tool

Environment
(Shell, Linux)

User

Agent

LM

Tool

bash>

Write me a Python function parity : …
1

Here are the available file operations:
[…, {“name”: “terminal.execute”},
{“name”: “filesystem.writeFile”}]

2

{ "name": ”terminal.execute",
 "arguments": {
 ”cmd": ”python test_parity.py"
 } }

6
After writing the test case with the file system…

(call the tool)
7

(pass to the terminal)
8

Terminal as Tool

Environment
(Shell, Linux)

User

Agent

LM

Tool

bash> python test_pa….py

Write me a Python function parity : …
1

Here are the available file operations:
[…, {“name”: “terminal.execute”},
{“name”: “filesystem.writeFile”}]

2

{ "name": ”terminal.execute",
 "arguments": {
 ”cmd": ”python test_parity.py"
 } }

6
After writing the test case with the file system…

(call the tool)
7

(pass to the terminal)
8

(bash: run the
command)

9

Terminal as Tool

Environment
(Shell, Linux)

User

Agent

LM

Tool

bash> python test_pa….py
Traceback (most recent
call last):
File "test_parity.py",
line 4, in <module>
 assert parity.parity(…

Write me a Python function parity : …
1

Here are the available file operations:
[…, {“name”: “terminal.execute”},
{“name”: “filesystem.writeFile”}]

2

{ "name": ”terminal.execute",
 "arguments": {
 ”cmd": ”python test_parity.py"
 } }

6
After writing the test case with the file system…

(call the tool)
7

(pass to the terminal)
8

(bash: run the
command)

9

{"exitCode": 1, "stdout": "",
 "stderr": "Traceback (most recent…):”}

10

Terminal as Tool

• Context blow-up from command output (esp. build logs)
• Keep a separate “bash context buffer” from chat/planning memory.
• Before sending to the LLM, budget-check size.

• If too large: summarize head + tail (e.g., first 50 lines, last 200 lines, plus a bullet list
of errors/warnings).

• If still large: store full log in a vector DB (with run ID + command + timestamp); send
only a compact summary + retrieval keys.

• Always attach metadata: command, exit code, duration, bytes, truncation
flag.

Terminal as Tool

• Don’t rely on stdout alone, inspect exit code & stderr
• Treat exitCode as the primary success signal.
• Parse stderr separately; it may contain warnings, progress bars, or runtime

logs, not only errors.
• Normalize outputs:

• status := success | failure | timeout | killed
• stdout_excerpt, stderr_excerpt, diagnostics (e.g., grep for “error:”, “warning:”).

• Prefer structured extraction (regex for file:line:col, error codes) to feed
precise hints back to the LLM.

Terminal as Tool

• Non-terminating / long-running commands
• Set hard timeouts per command (e.g., 30–120s default; shorter for cat,

longer for pytest).
• For allowed long runs:

• Stream incremental chunks (e.g., every N seconds / N KB) and ask the LLM:
“Continue or preempt?”

• Support preemption (SIGINT/SIGKILL), and return a partial transcript with a
“truncated” marker.

• Maintain a deny/guard list (e.g., top, interactive shells, tail -f) unless
explicitly whitelisted.

OpenHands: An Open Platform for AI Software Developers as Generalist Agents, Wang et. al., ICLR 2025

OpenHands: An Open Platform for AI Software Developers as Generalist Agents, Wang et. al., ICLR 2025

OpenHands: An Open Platform for AI Software Developers as Generalist Agents, Wang et. al., ICLR 2025

OpenHands: An Open Platform for AI Software Developers as Generalist Agents, Wang et. al., ICLR 2025

USER

LLM

Terminal as Tool: Security

• LLM may leave the current working directory
• CWE-22: Path Traversal Vulnerability

/ME
 - /SOME_SECRET
 - /my_project
 - readme.md
 - .gitignore
 - src/
 - parity.py

Agent

LM

{ "name": ”terminal.execute",
 "arguments": {
 ”cmd": ”cd ..; ls -l"
 } }

n

Environment
(Shell, Linux)

Tool

Some secret being revealed
to the LLM

Terminal as Tool: Security

• LLM may pursue excessive permissions
• CWE-284: Improper Access Controls

- /my_project
 - readme.md
 - .gitignore
 - src/
 - parity.py

Agent

LM

{ "name": ”terminal.execute",
 "arguments": {
 ”cmd": ”chmod 777 –R ."
 } }

n

Environment
(Shell, Linux)

Tool

Allowing all files to be
readable, writable, and
executable by all users

When Developer Aid Becomes Security Debt: A Systematic Analysis of Insecure Behaviors in
LLM Coding Agents, Kozak et. al., 2025

When Developer Aid Becomes Security Debt: A Systematic Analysis of Insecure Behaviors in
LLM Coding Agents, Kozak et. al., 2025

When Developer Aid Becomes Security Debt: A Systematic Analysis of Insecure Behaviors in
LLM Coding Agents, Kozak et. al., 2025

When Developer Aid Becomes Security Debt: A Systematic Analysis of Insecure Behaviors in
LLM Coding Agents, Kozak et. al., 2025

Shifting responsibility back to the users…

Topics of Today

• More tools for agentic systems:
• Terminal as a tool
• Language servers as tools

• Other topics of agentic systems
• Tool selection problem
• Interactive programming
• Context management
• Security of agentic systems

Language servers as Tools

Python Language Server

Language servers as Tools

Go Language Server

Language servers as Tools

• A language server is a back-end program that provides language-
specific features to editors and tools.
• Key points:
• Language servers are like the brain of the IDE, providing semantic analysis

without full compilation.
• For humans, they power autocomplete, quick fixes, type hints, “jump to

definition”, and “jump to reference.”
• For agents, this is structured feedback to guide code editing beyond trial-

and-error.

Language servers as Tools

• Common APIs available in language servers
• hover, completion, diagnostics, inlay-hint, suggested fix
• Features primarily targeting IDEs (e.g., VSCode, Eclipse, IntelliJ)

Language Server (LS) as Tool

1. Diagnostics (LS à LLM)

Environment
(Repository &

Language Server)

User

Agent

LM

Tool

def add(x: int, y: int) -> int:
 return x + y

result = ad(1, 2) # bug: should be add

{ "jsonrpc": "2.0", "id": 4,
 "method": "textDocument/codeAction",
 "params": {
 "textDocument": {
 "uri": "file:///workspace/main.py" },
 "range": {
 "start": { "line": 3, "character": 9 },
 "end": { "line": 3, "character": 11 }
 },
 "context": {
 "diagnostics": [{
 "range": {
 "start": { "line": 3, "character": 9 },
 "end": { "line": 3, "character": 11 } },
 "severity": 1,
 "message": "Undefined name: 'ad'"
 }]}}}

Language Server (LS) as Tool

1. Diagnostics (LS à LLM)
2. Asks for a fix (LLM à LS)

Environment
(Repository &

Language Server)

User

Agent

LM

Tool

def add(x: int, y: int) -> int:
 return x + y

result = ad(1, 2) # bug: should be add

{ “tool”: “pyright”,
 "name": "textDocument/codeAction",
 "arguments": {
 "textDocument": { "uri":
"file:///workspace/main.py" },
 "range": {
 "start": { "line": 3, "character": 9 },
 "end": { "line": 3, "character": 11 }
 },
 } }

Language Server (LS) as Tool

1. Diagnostics (LS à LLM)
2. Asks for a fix (LLM à LS)
3. Performs simple fix (LS à Env)

Environment
(Repository &

Language Server)

User

Agent

LM

Tool

def add(x: int, y: int) -> int:
 return x + y

result = ad(1, 2) # bug: should be add

{ "kind": "quickfix", "edit": {
 "documentChanges": [{
 "textDocument": {
 "uri": "file:///workspace/main.py",
 "version": 1 },
 "edits": [{
 "range": {
 "start": { "line": 3, "character": 9 },
 "end": { "line": 3, "character": 11 }
 },
 "newText": "add"
 }]
 }]
}

Language Server (LS) as Tool

1. Diagnostics (LS à LLM)
2. Asks for a fix (LLM à LS)
3. Performs simple fix (LS à Env)
4. Report to LLM agent (Env à LLM) Environment

(Repository &
Language Server)

User

Agent

LM

Tool

def add(x: int, y: int) -> int:
 return x + y

result = ad(1, 2) # bug: should be add

{ ”success”: true }

Language Server (LS) as Tool

• Behind the hood, Language servers are powered by
• Incremental parsers and compilers
• Linters
• Static analysis results

• Dataflow and control flow analysis
• Call graph and def-use retrievers

• Rule based fix suggestion
• Lexical analysis
• Type analysis

Topics of Today

• More tools for agentic systems:
• Terminal as a tool
• Language servers as tools

• Other topics of agentic systems
• Tool selection problem
• Context management
• Security of agentic systems

Tool Selection Problem

Tool Selection Problem

• Agents often have too many tools available:
• Sequential thinking, web search, file system, vector database, terminal,

language servers, CI/CD pipelines
• Auxiliary tools: get date/time, user info, local IDE context, system info

• Wrong tool choice leads to…
• Wasted tokens, cost, wrong fixes, security loopholes…

• How could LLM agent plan and know what tool to use?
• Challenge 1: multiple ways to solve the same problem
• Challenge 2: some are costly but precise, others are cheap but shallow
• Challenge 3: error attribution – which tool call led to a failure outcome?

Note on NDCG Metrics
• Normalized discounted cumulative gain

(NDCG)
• Evaluating ranking quality

• For example:
• Ground truth ranking: [C, A, B, D]
• Predicted ranking 1: [C, B, A, D]
• Predicted ranking 2: [A, C, B, D]

• Discounted cumulative gain (DCG)
divided by Ideal discounted cumulative
gain (IDCG)

Note on NDCG Metrics
• Normalized discounted cumulative gain

(NDCG)
• Evaluating ranking quality

• For example:
• Ground truth ranking: [C, A, B, D]
• Predicted ranking 1: [C, B, A, D]
• Predicted ranking 2: [A, C, B, D]

• Discounted cumulative gain (DCG)
divided by Ideal discounted cumulative
gain (IDCG)

Note on NDCG@k Metrics
• Normalized discounted cumulative gain

(NDCG)
• Evaluating ranking quality

• For example:
• Ground truth ranking: [C, A, B, D]
• Predicted ranking 1: [C, B, A, D]
• Predicted ranking 2: [A, C, B, D]

• Discounted cumulative gain (DCG)
divided by Ideal discounted cumulative
gain (IDCG) up to index 𝑘

Topics of Today

• More tools for agentic systems:
• Terminal as a tool
• Language servers as tools

• Other topics of agentic systems
• Tool selection problem
• Context management
• Security of agentic systems

Context Management Problem

• Phenomena related to long contexts:
• When context is too long, LLM performance starts to degrade
• Information buried in the middle would be more likely ignored by LLM

Context Management Problem

• Phenomena related to long contexts:
• When context is too long, LLM performance starts to degrade
• Information buried in the middle would be more likely ignored by LLM

Context Management Problem

• Phenomena related to long contexts:
• When context is too long, LLM performance starts to degrade
• Information buried in the middle would be more likely ignored by LLM

Context Management Problem

• Phenomena related to long contexts:
• When context is too long, LLM performance starts to degrade
• Information buried in the middle would be more likely ignored by LLM

Context Management Problem

• Phenomena related to long contexts:
• When context is too long, LLM performance starts to degrade
• Information buried in the middle would be more likely ignored by LLM

Context Management Problem

• Phenomena related to long contexts:
• When context is too long, LLM performance starts to degrade
• Information buried in the middle would be more likely ignored by LLM

Context Rot

Context Rot

Context Management Problem

• Phenomena related to long contexts:
• When context is too long, LLM performance starts to degrade
• Information buried in the middle would be more likely ignored by LLM

• Managing of context becomes important:
• How do we make sure that the context size stays manageable?
• How do we make sure that relevant information are recognizable by LLM?

Context Management Problem

• Phenomena related to long contexts:
• When context is too long, LLM performance starts to degrade
• Information buried in the middle would be more likely ignored by LLM

• Managing of context becomes important:
• How do we make sure that the context size stays manageable?
• How do we make sure that relevant information are recognizable by LLM?

• Solution: Improving token efficiency of tools
• For costly tool calls, optimize the tokens; prefer dense information
• Avoid showing full terminal error message logs or entire files

Summarization & Compression

• … after multiple turns with rotting context
• Caused by excessive compiler feedback, code

edits, un-informative testing results, etc.

• Agentic framework:
• Summarizes the current context…
• Saves the summarization into a file…
• Stores the file into RAG database…
• Clears the context…
• Tells LLM “in case you want to know the history,

please query the RAG database”…
• Continuing the implementation…

Active Context Management

Active Context Management

Active Context Management

Active Context Management

Topics of Today

• More tools for agentic systems:
• Terminal as a tool
• Language servers as tools

• Other topics of agentic systems
• Tool selection problem
• Context management
• Security of agentic systems

Security of Agentic Frameworks

LLM

When Developer Aid Becomes Security Debt: A Systematic Analysis of Insecure Behaviors in
LLM Coding Agents, Kozak et. al., 2025

When Developer Aid Becomes Security Debt: A Systematic Analysis of Insecure Behaviors in
LLM Coding Agents, Kozak et. al., 2025

When Developer Aid Becomes Security Debt: A Systematic Analysis of Insecure Behaviors in
LLM Coding Agents, Kozak et. al., 2025

When Developer Aid Becomes Security Debt: A Systematic Analysis of Insecure Behaviors in
LLM Coding Agents, Kozak et. al., 2025

CWE: Common Weakness Enumeration

CWE: Common Weakness Enumeration

Terminal as Tool: Security

• LLM may leave the current working directory
• CWE-22: Path Traversal Vulnerability

/ME
 - /SOME_SECRET
 - /my_project
 - readme.md
 - .gitignore
 - src/
 - parity.py

Agent

LM

{ "name": ”terminal.execute",
 "arguments": {
 ”cmd": ”cd ..; ls -l"
 } }

n

Environment
(Shell, Linux)

Tool

Some secret being revealed
to the LLM

Sandboxing LLM Agents

Sandboxing LLM Agents

Sandboxing LLM Agents

Topics of Today

• More tools for agentic systems:
• Terminal as a tool
• Language servers as tools

• Other topics of agentic systems
• Tool selection problem
• Context management
• Security of agentic systems

Logistics – Week 6

• Assignment 2
• https://github.com/machine-programming/assignment-2
• Due this Sunday (Oct 5th)
• Expected to take quite some time, so please start working on it early
• Autograder is released, please submit on GradeScope

https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2

