Machine Programming

Lecture 12 – Pre-training of Coding Language Models

Ziyang Li

Logistics – Week 7

- Assignment 3
 - https://github.com/machine-programming/assignment-3
 - Releasing tomorrow; due two weeks from now (Oct 23)
- Oral presentation sign up sheet
 - Sent out during the weekend
 - Oral presentation starting on Week 9
- Forming groups for your final projects!
 - Sign up form will be sent out on Thursday
 - Form a group of 2-3 before Next Thursday (Oct 16)

The Course So Far

Behavioral Specification

- What should the program do?
- 1. Examples
- 2. Types
- 3. Functional Specifications
- 4. Natural Language

Synthesis Strategy

- How do we find such a program?

EnumerationLanguage Models

- Prompting
- Iterative refinement
- Agentic frameworks

Structural Specification

- What is the space of the programs?

General Purpose Programming LanguagePython / Java / C / Rust / ...

Domain Specific Languages

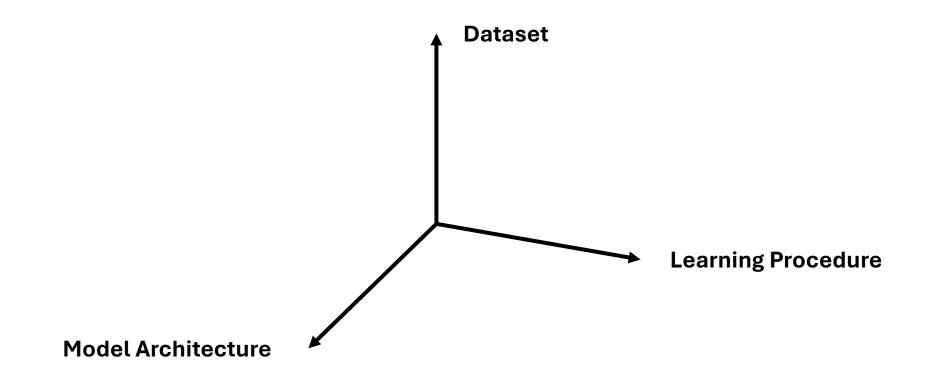
The Course So Far: Synthesis Strategy

- No prior knowledge
 - Enumerate the entire program space to find the "correct" program
- With prior knowledge: assumes a good enough language model
 - We can query language model to write simple programs
 - We can perform constraint decoding to follow program grammar
 - We can perform prompting strategies to steer language models
 - We can build agentic framework with tools to augment the synthesis

The Course So Far: Synthesis Strategy

- No prior knowledge
 - Enumerate the entire program space to find the "correct" program
- With prior knowledge: assumes a good enough language model
 - We can query language model to write sin
 - We can perform constraint decoding to for
- How do we obtain a good enough language model?
- We can perform prompting strategies to steer language models
- We can build agentic framework with tools to augment the synthesis

How to obtain a "good enough" LLM



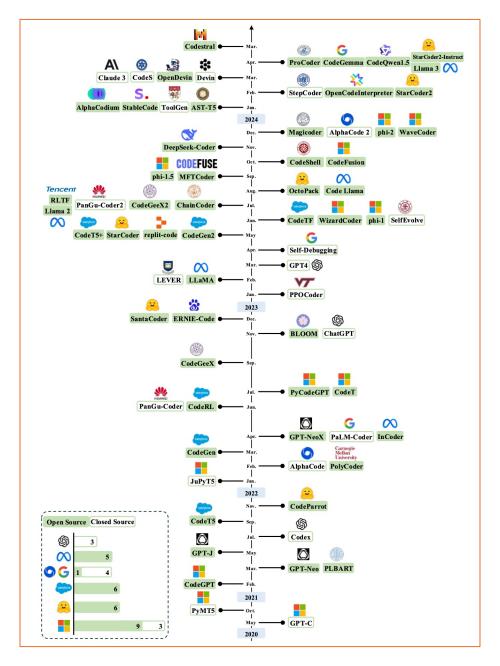
How to obtain a "good enough" LLM

Dataset Pre-training dataset / Fine-tuning dataset Instruction tuning dataset Alignment dataset Human / Logical feedback dataset **Evaluation dataset Learning Procedure** Optimization objectives Learning algorithm (SFT, RL, etc.) Continual learning, Curriculum learning Staged learning

Model Architecture

- Encoder-decoder models
- Decoder-only models
- Hyper-parameter tuning

- ..

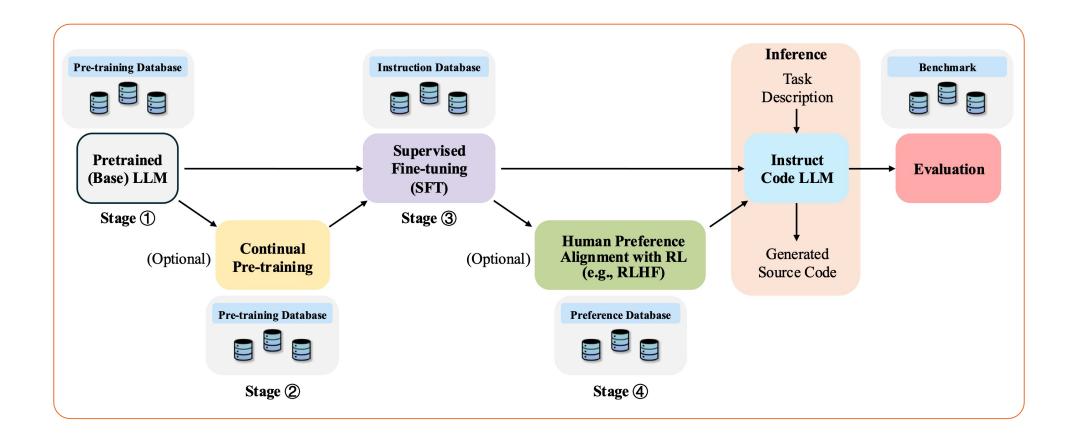


A Survey on Large Language Models for Code Generation, Jiang et al., 2024

Learning Objective

- This lecture is NOT about:
 - Memorizing every model name, size, or configuration
 - Ranking models by "who's best" or "who wins on benchmark X"
 - Treating architecture, objective, or training stage as absolute recipes
 - Chasing transient leaderboard scores or buzzwords
- V This lecture IS about:
 - Grasping the conceptual framework behind how LLMs are trained
 - Developing the skill to read new papers, extract the key ideas, and connect them to broader trends
 - Recognizing trade-offs and design rationales, not just final numbers
 - Building intuition to anticipate and interpret future developments

High-level Training, Inference, and Evaluation

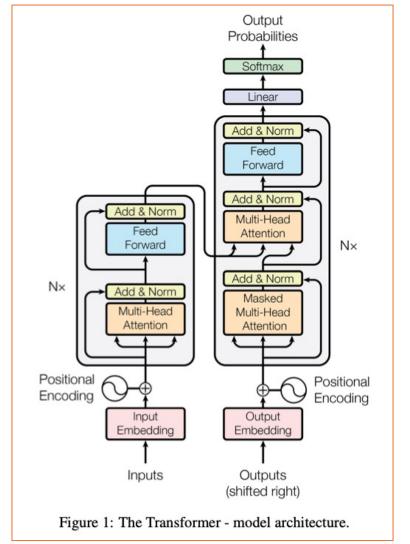


Today's Agenda

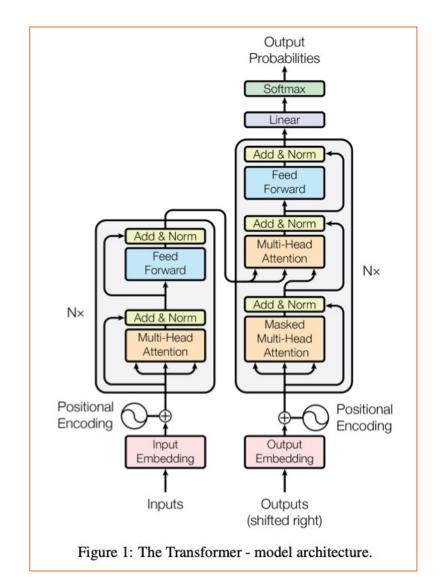
- Pre-training stage
 - Model architecture
 - Pre-training dataset
 - Learning objectives
 - Evaluation dataset
- Special topics
 - Post-training staging
 - Scaling law
 - Hallucination



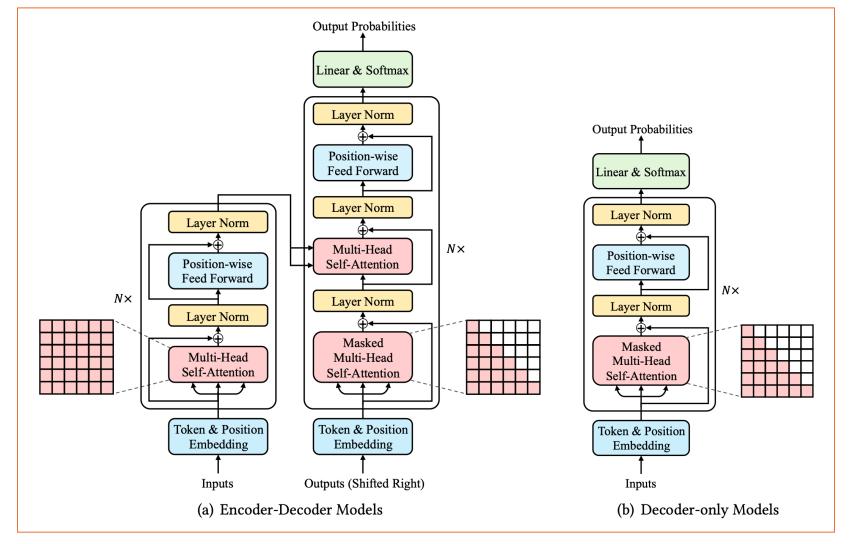
Pre-training: Model Architecture

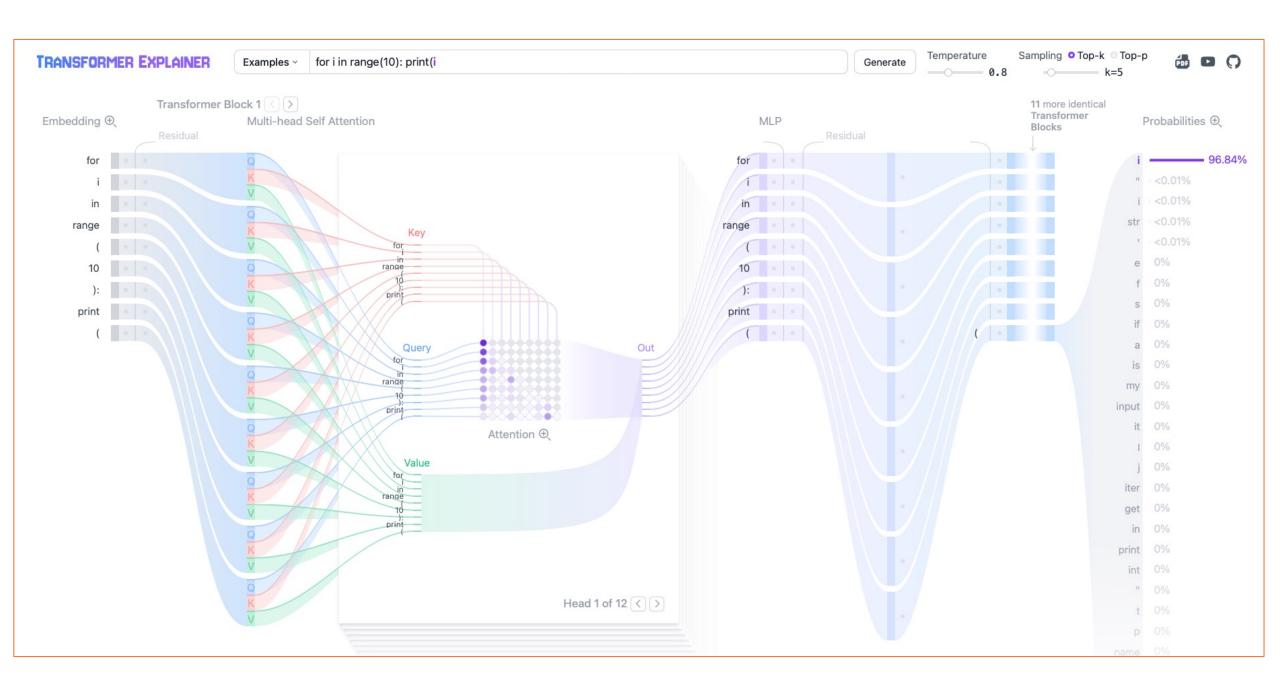


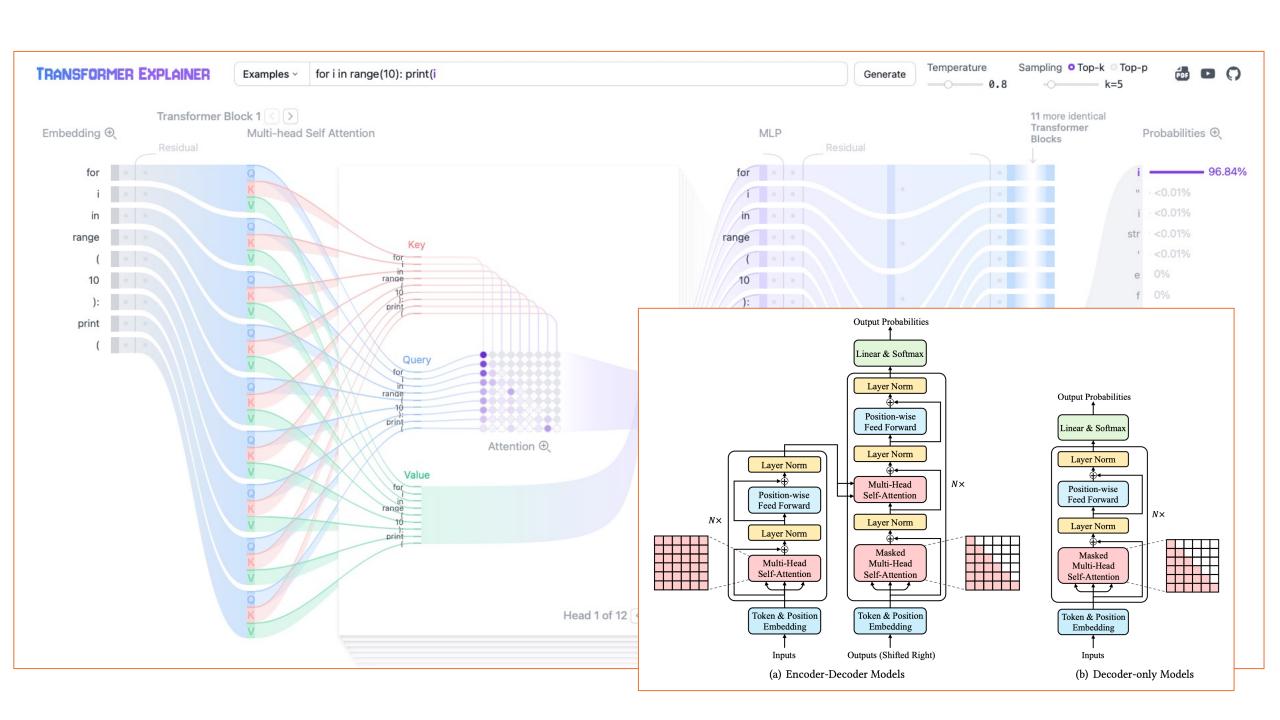
Pre-training: Model Architecture

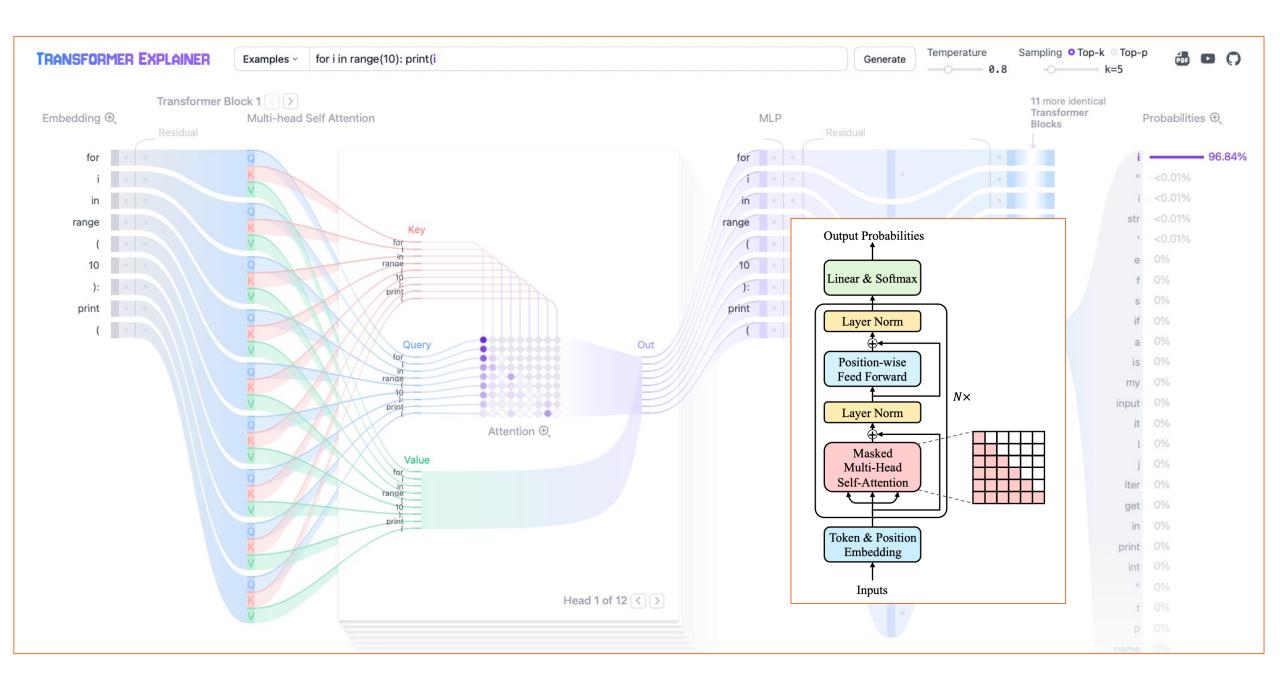


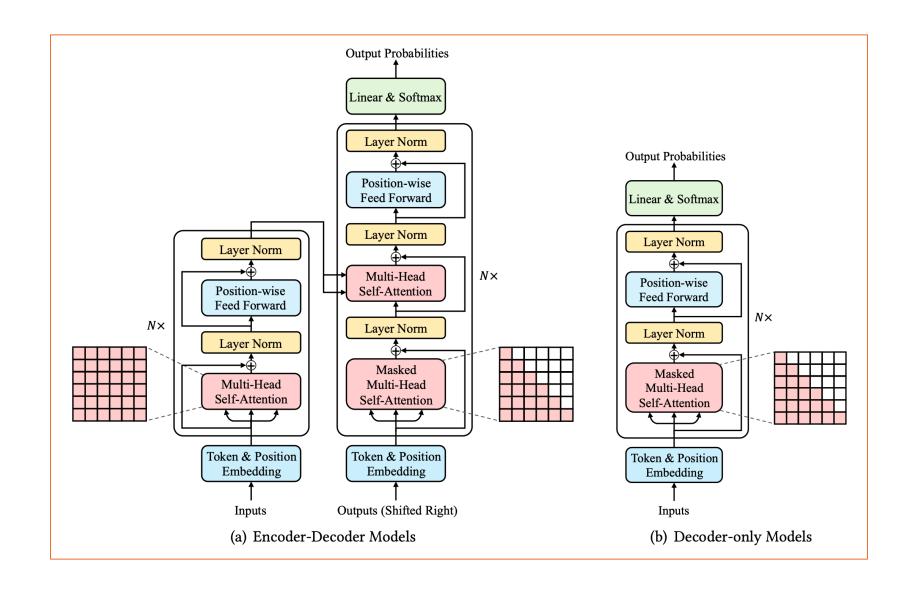
Pre-training: Model Architecture











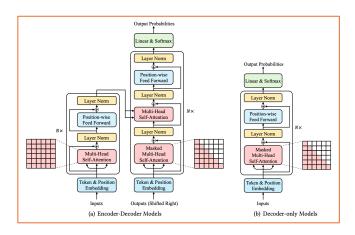


Table 7. The overview of LLMs with encoder-decoder architectures for code generation.

Model	Institution	Size	Vocabulary	Context Window	Date	Open Source
PyMT5[57]	Microsoft	374M	50K	1024+1024	2020-10	
PLBART[7]	UCLA	140M	50K	1024+1024	2021-03	✓
CodeT5 [271]	Salesforce	60M, 220M, 770M	32K	512+256	2021-09	✓
JuPyT5[41]	Microsoft	350M	50K	1024+1024	2022-01	
AlphaCode[151]	DeepMind	284M, 1.1B, 2.8B, 8.7B, 41.1B	8K	1536+768	2022-02	
CodeRL[139]	Salesforce	770M	32K	512+256	2022-06	✓
ERNIE-Code[40]	Baidu	560M	250K	1024+1024	2022-12	✓
PPOCoder[238]	Virginia Tech	770M	32K	512+256	2023-01	
CodeT5+[269]	Salesforce	220M, 770M, 2B, 6B, 16B	50K	2048+2048	2023-05	✓
CodeFusion[241]	Microsoft	75M	32k	128+128	2023-10	✓
AST-T5[81]	UC Berkeley	226M	32k	512+200/300	2024-01	✓

Encoder-decoder architectures

Model	Institution	Size	Vocabulary	Context Window	Date	Open Source
GPT-C [244]	Microsoft	366M	60K	1024	2020-05	
CodeGPT [172]	Microsoft	124M	50K	1024	2021-02	~
GPT-Neo[30]	EleutherAI	125M, 1.3B, 2.7B	50k	2048	2021-03	~
GPT-J [258]	EleutherAI	6B 12M, 25M, 42M,	50k	2048	2021-05	~
Codex [48]	OpenAI	85M, 300M, 679M, 2.5B, 12B	-	4096	2021-07	
CodeParrot [254]	Hugging Face	110M, 1.5B	33k	1024	2021-11	~
PolyCoder [290]	CMU	160M, 400M, 2.7B	50k	2048	2022-02	~
CodeGen [193]	Salesforce	350M, 2.7B, 6.1B, 16.1B	51k	2048	2022-03	~
GPT-NeoX [29]	EleutherAI	20B	50k	2048	2022-04	~
PaLM-Coder [54]	Google	8B, 62B, 540B	256k	2048	2022-04	
InCoder [77]	Meta	1.3B, 6.7B	50k	2049	2022-04	/
PanGu-Coder [55]	Huawei	317M, 2.6B	42k	1024	2022-07	
PyCodeGPT [306]	Microsoft	110M	32k	1024	2022-06	~
CodeGeeX [321]	Tsinghua	13B	52k	2048	2022-09	/
BLOOM [140]	BigScience	176B	251k	-	2022-11	/
ChatGPT [196]	OpenAI	-	-	16k	2022-11	/
SantaCoder [9]	Hugging Face	1.1B	49k	2048	2022-12	✓
LLaMA [252]	Meta	6.7B, 13.0B, 32.5B, 65.2B	32K	2048	2023-02	✓
GPT-4 [5]	OpenAI	-	_	32K	2023-03	
CodeGen2 [192]	Salesforce	1B, 3.7B, 7B, 16B	51k	2048	2023-05	/
replit-code [223]	replit	3B	33k	2048	2023-05	/
StarCoder [147]	Hugging Face	15.5B	49k	8192	2023-05	/
WizardCoder [173]	Microsoft	15B, 34B	49k	8192	2023-06	/
phi-1 [84]	Microsoft	1.3B	51k	2048	2023-06	1
CodeGeeX2 [321]	Tsinghua	6B	65k	8192	2023-07	/
PanGu-Coder2 [234]	Huawei	15B	42k	1024	2023-07	
Llama 2 [253]	Meta	7B, 13B, 70B	32K	4096	2023-07	✓
OctoCoder [187]	Hugging Face	15.5B	49k	8192	2023-08	1
Code Llama [227]	Meta	7B, 13B, 34B	32k	16384	2023-08	/
CodeFuse [160]	Ant Group	350M, 13B, 34B	101k	4096	2023-09	/
phi-1.5 [150]	Microsoft	1.3B	51k	2048	2023-09	1
CodeShell [285]	Peking University	7B	70k	8192	2023-10	1
Magicoder [278]	UIUC	7B	32k	16384	2023-10	/
AlphaCode 2 [11]	Google DeepMind	-	- -	-	2023-12	
StableCode [210]	StabilityAI	3B	50k	16384	2024-01	/
WaveCoder [301]	Microsoft	6.7B	32k	16384	2023-12	/
phi-2 [182]	Microsoft	2.7B	51k	2048	2023-12	/
DeepSeek-Coder [88]	DeepSeek	1.3B, 6.7B, 33B	32k	16384	2023-11	1
StarCoder 2 [170]	Hugging Face	15B, 6.7B, 55B	49k	16384	2024-02	/
Claude 3 [14]	Anthropic	-	-	200K	2024-02	
CodeGemma [59]	Google	2B, 7B	25.6k	8192	2024-04	V
Code-Qwen [249]	Qwen Group	7B	92K	65536	2024-04	~
Llama3 [180]	Meta	8B, 70B	128K	8192	2024-04	~
StarCoder2-Instruct [304]	Hugging Face	15.5B	49K	16384	2024-04	~
Codestral [181]	Mistral AI	22B	33k	32k	2024-05	/

Decoder-only architectures

A Survey on Large Language Models for Code Generation, Jiang et al., 2024

Model Architecture Case Study: Llama 3

Meta

The Llama 3 Herd of Models

Llama Team, Al @ Meta¹

¹A detailed contributor list can be found in the appendix of this paper.

Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.

Date: July 23, 2024

Website: https://llama.meta.com/

Model Architecture Case Study: Llama 3

Meta

The Llama 3 Herd of Models

Llama Team, Al @ Me

¹A detailed contribu

Modern artificial int new set of foundatic multilinguality, cod 405B parameters ar empirical evaluation models such as GPT post-trained versions and output safety. 'video, and speech as performs competitiv resulting models are

Date: July 23, 2024 Website: https://llan

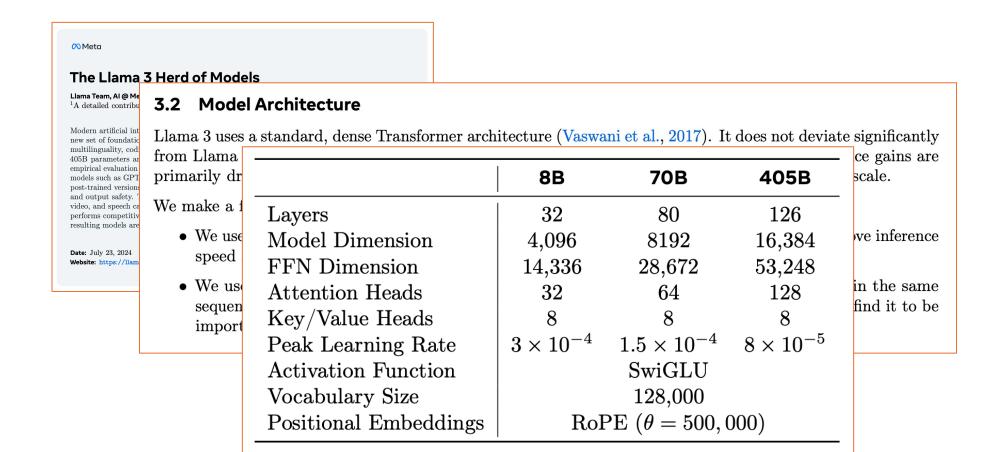
3.2 Model Architecture

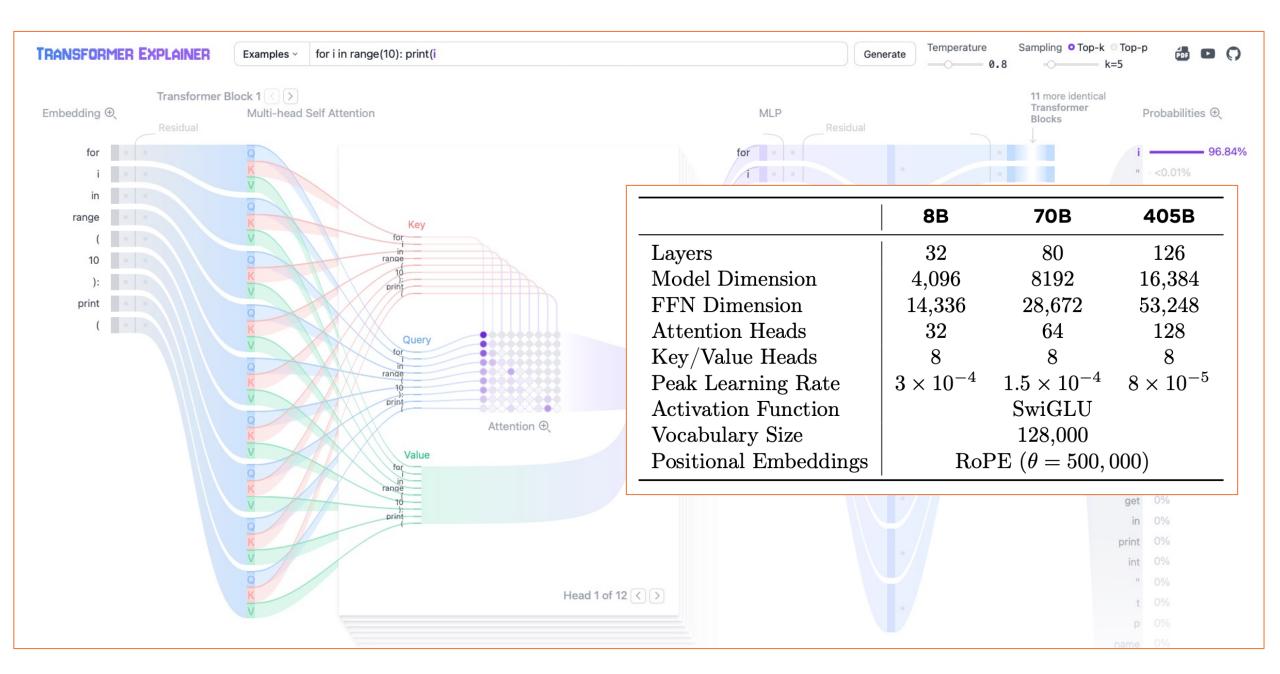
Llama 3 uses a standard, dense Transformer architecture (Vaswani et al., 2017). It does not deviate significantly from Llama and Llama 2 (Touvron et al., 2023a,b) in terms of model architecture; our performance gains are primarily driven by improvements in data quality and diversity as well as by increased training scale.

We make a few small modifications compared to Llama 2:

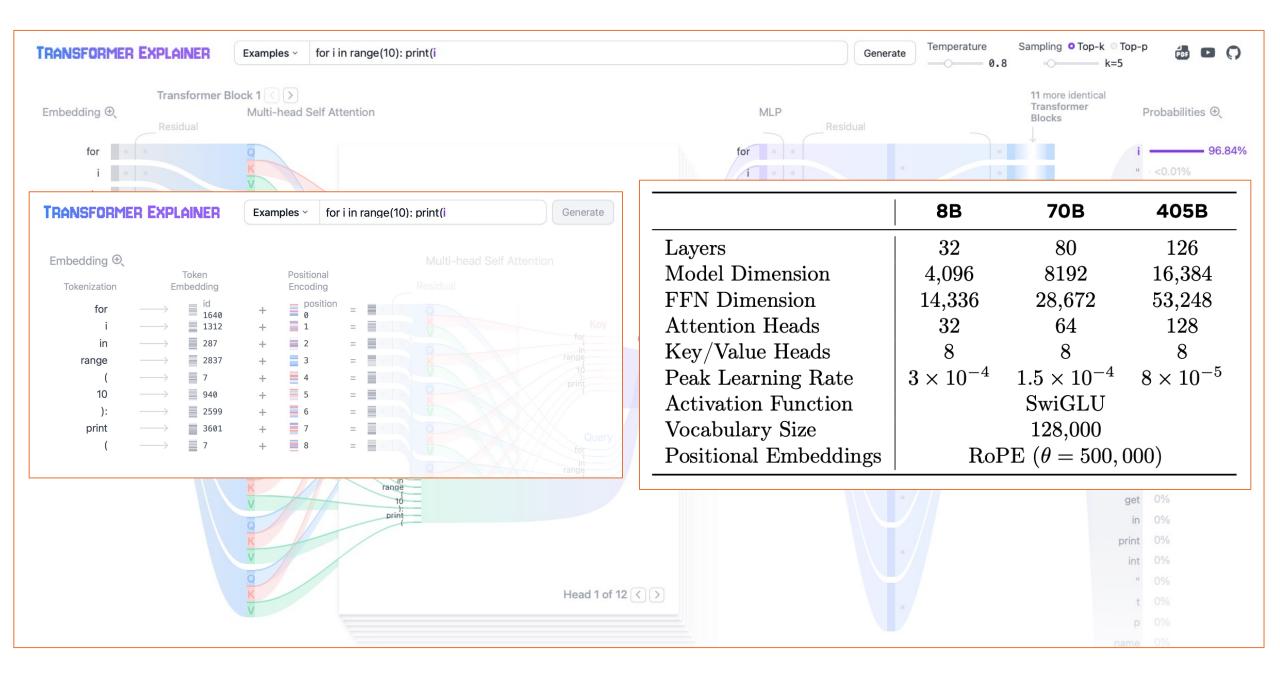
- We use grouped query attention (GQA; Ainslie et al. (2023)) with 8 key-value heads to improve inference speed and to reduce the size of key-value caches during decoding.
- We use an attention mask that prevents self-attention between different documents within the same sequence. We find that this change had limited impact during in standard pre-training, but find it to be important in continued pre-training on very long sequences.

Model Architecture Case Study: Llama 3

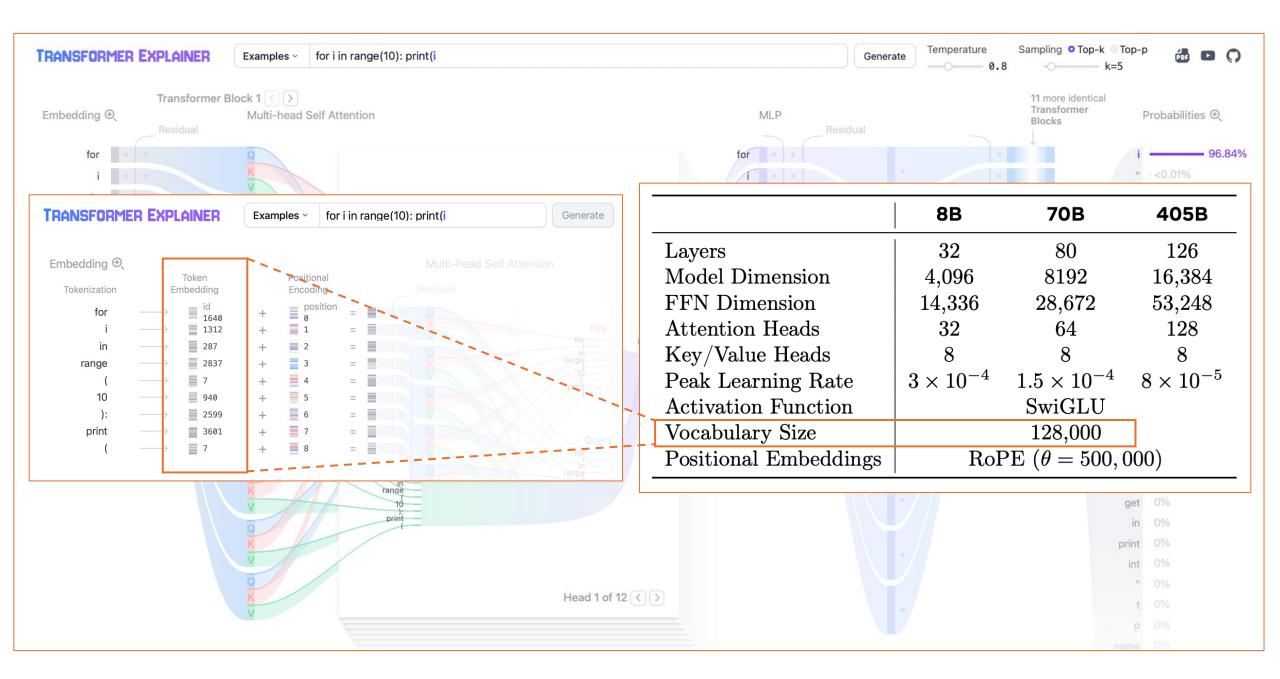




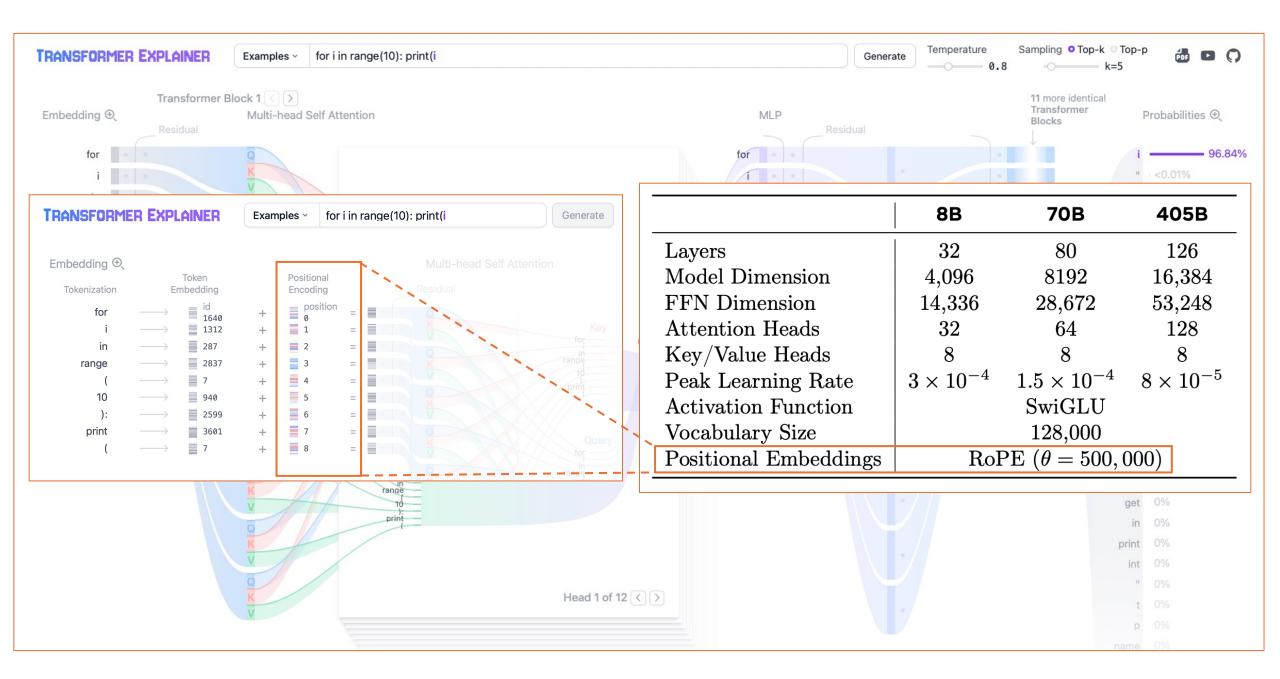
The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024



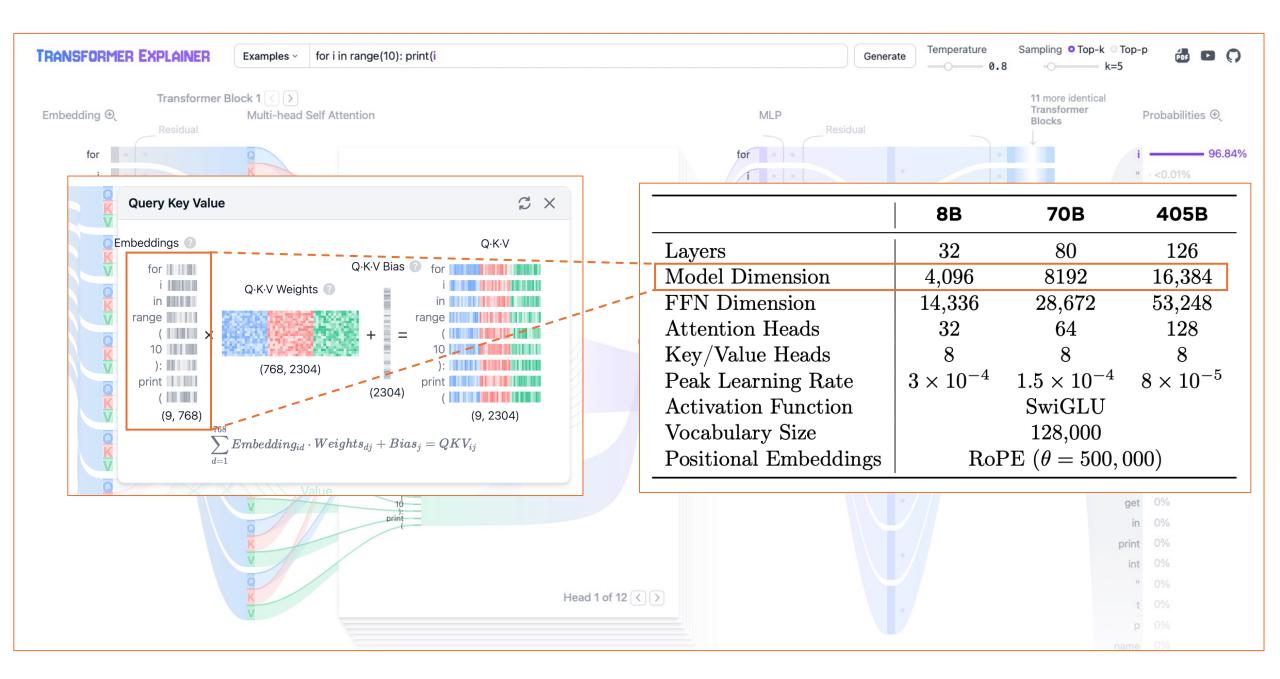
The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024



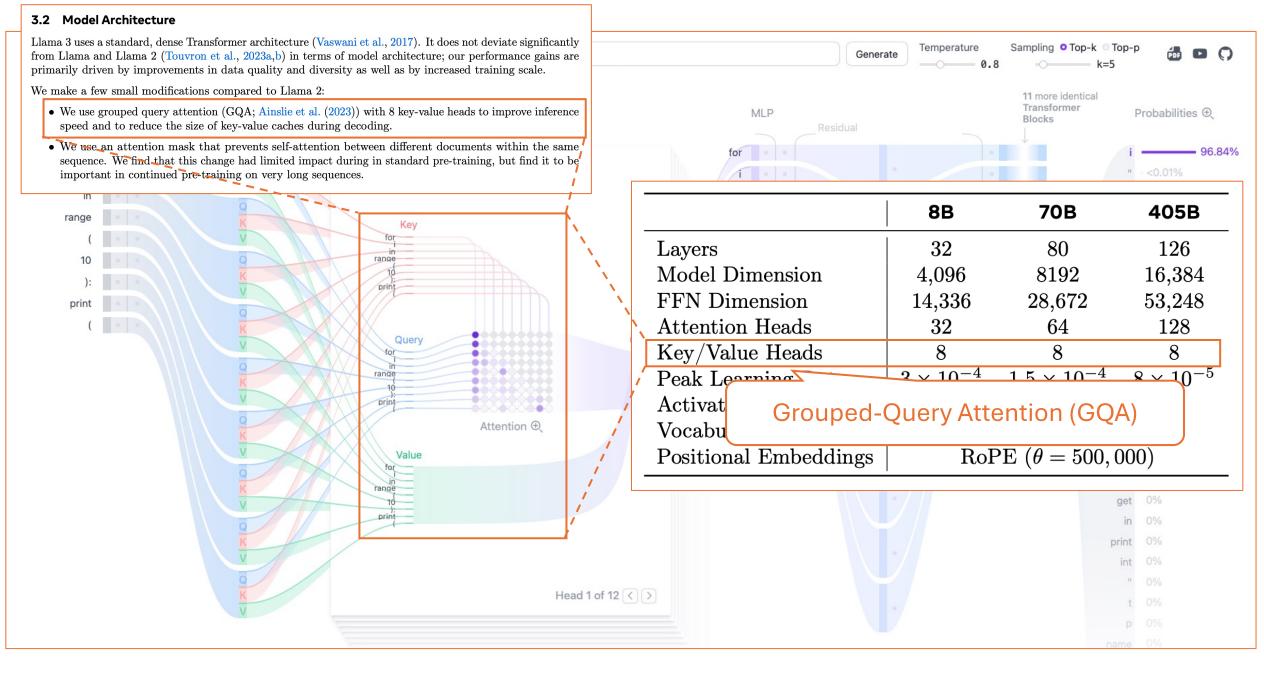
The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024



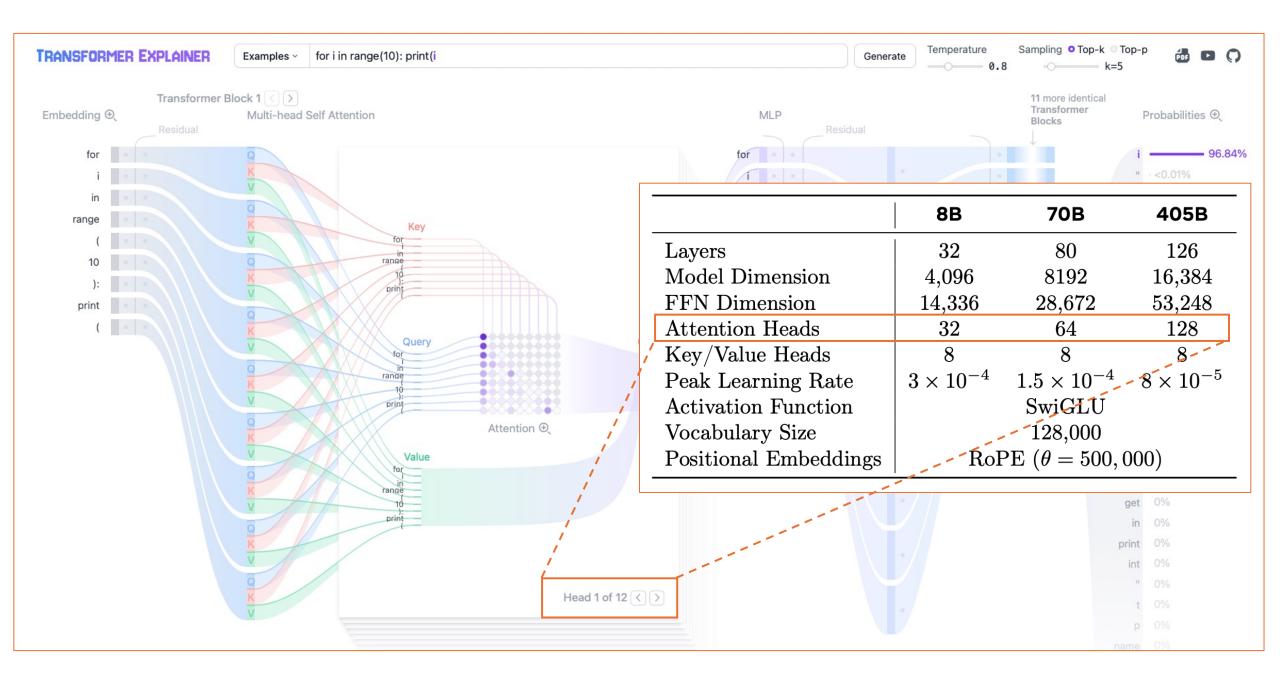
The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024



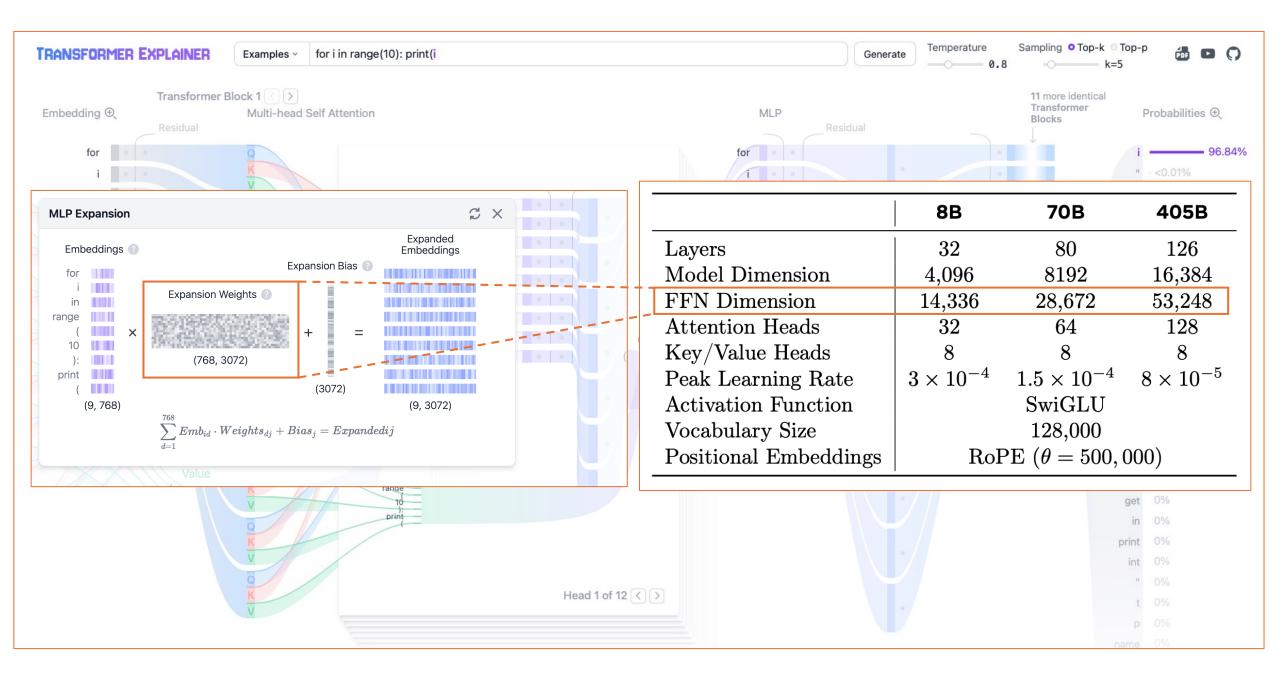
The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024



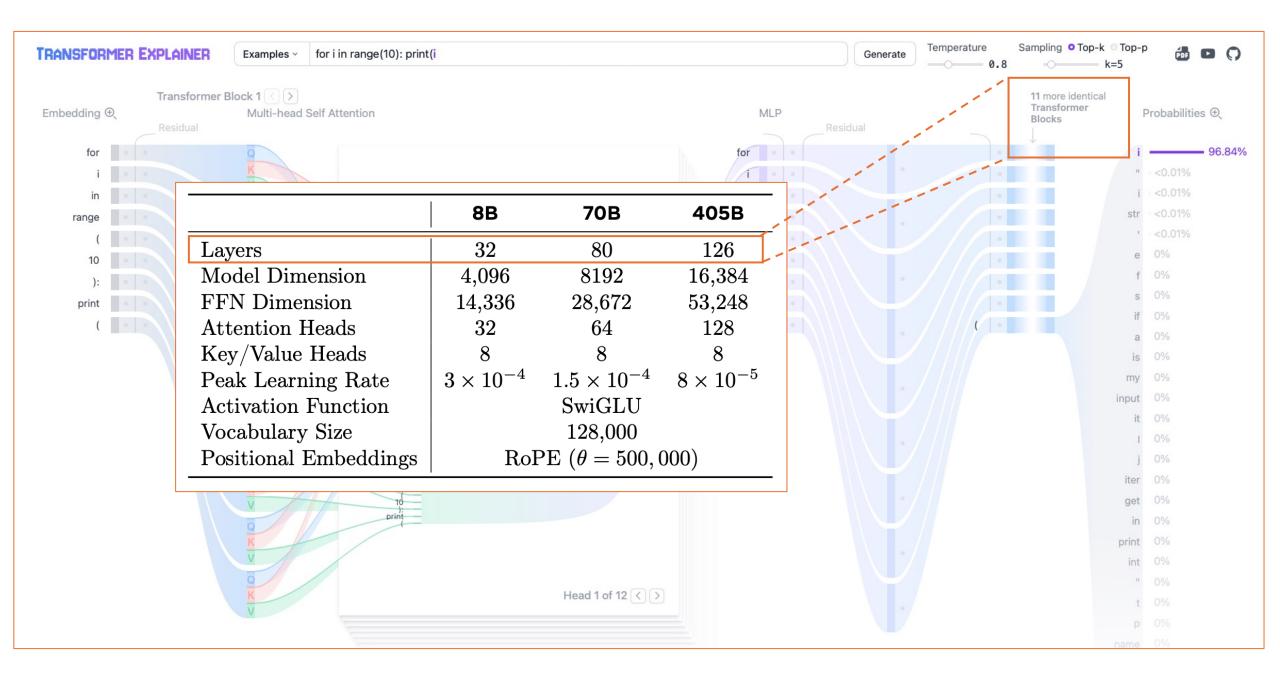
The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024



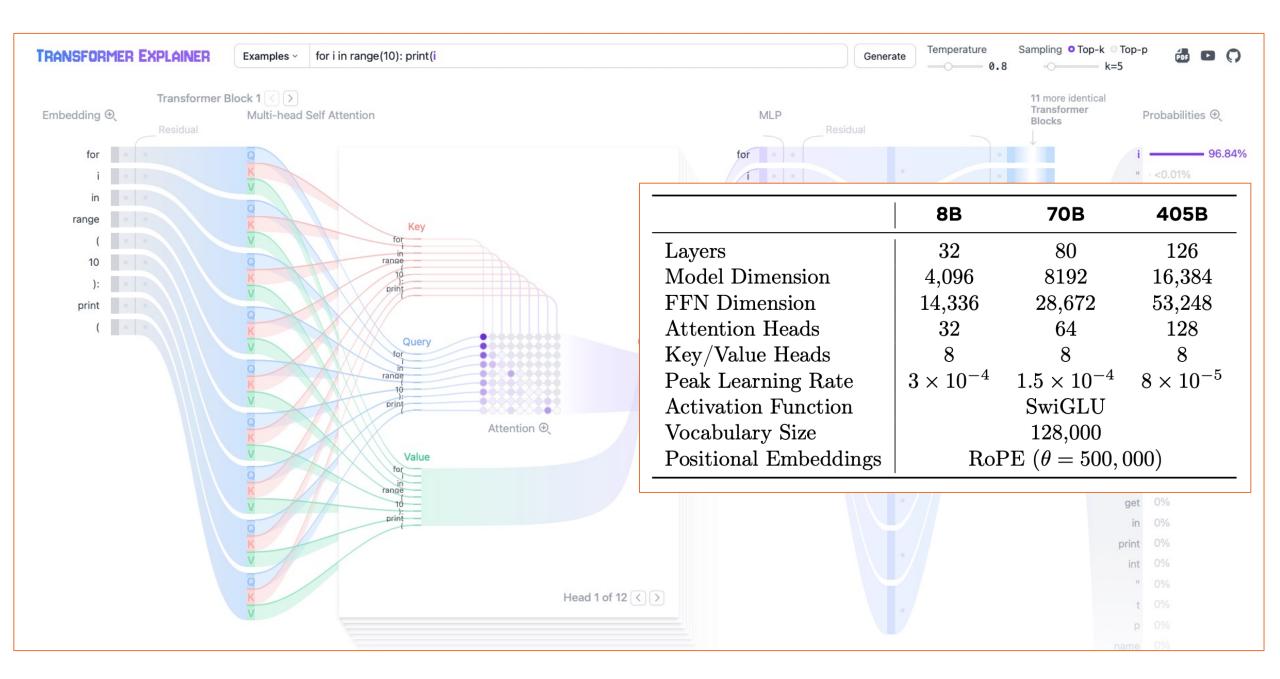
The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024



The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024



The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024



The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

Meta

The Llama 3 Herd of Models

Llama Team, Al @ Meta¹

A detailed

Modern artif new set of fc multilingual 405B param empirical eva models such post-trained and output s video, and s₁ performs cor resulting mo

Date: July 23
Website: http

	8B	70B	405B	
Layers	32	80	126	
Model Dimension	4,096	8192	$16,\!384$	
FFN Dimension	14,336	$28,\!672$	$53,\!248$	
Attention Heads	32	64	128	
Key/Value Heads	8	8	8	
Peak Learning Rate	3×10^{-4}	1.5×10^{-4}	8×10^{-5}	
Activation Function	SwiGLU			
Vocabulary Size	128,000			
Positional Embeddings	RoI	$PE (\theta = 500, 0)$	000)	

DeepSeek-Coder: When the Large Language Model Meets Programming - The Rise of Code Intelligence

Γ	Hyperparameter	DeepSeek-Coder 1.3B	DeepSeek-Coder 6.7B	DeepSeek-Coder 33B
Gu	Hidden Activation	SwiGLU	SwiGLU	SwiGLU
	Hidden size	2048	4096	7168
	Intermediate size	5504	11008	19200
	Hidden layers number	24	32	62
	Attention heads number	16	32	56
	Attention	Multi-head	Multi-head	Grouped-query (8)
	Batch Size	1024	2304	3840
	Max Learning Rate	5.3e-4	4.2e-4	3.5e-4

Table 2 | Hyperparameters of DeepSeek-Coder.

Google DeepMind

2024-06-27

Gemma 2: Improving Open Language Models at a Practical Size

Gemma Team, Google DeepMind¹

Parameters	2B	9B	27B
d_model	2304	3584	4608
Layers	26	42	46
Pre-norm	yes	yes	yes
Post-norm	yes	yes	yes
Non-linearity	GeGLU	GeGLU	GeGLU
Feedforward dim	18432	28672	73728
Head type	GQA	GQA	GQA
Num heads	8	16	32
Num KV heads	4	8	16
Head size	256	256	128
Global att. span	8192	8192	8192
Sliding window	4096	4096	4096
Vocab size	256128	256128	256128
Tied embedding	yes	yes	yes

Table 1 | Overview of the main model parameters and design choices. See the section on model architectures for more details.

2. Model Architecture

Gemma 3 models follow the same general decoder-only transformer architecture as previous iterations (Vaswani et al., 2017), with most architecture elements similar to the first two Gemma versions. We use a Grouped-Query Attention (GQA) (Ainslie et al., 2023) with post-norm and pre-norm with RMSNorm (Zhang and Sennrich, 2019). Inspired by Dehghani et al. (2023), Wortsman et al. (2023) and Chameleon Team (2024), we replace the soft-capping of Gemma 2 with QK-norm. In this section, we focus on some

2025-03-12

OpenAI

August 5, 2025

gpt-oss-120b & gpt-oss-20b Model Card

Component	120b	20 b
MLP	114.71B	19.12B
Attention	0.96B	0.64B
Embed+Unembed	1.16B	1.16B
Active Parameters	5.13B	3.61B
Total Parameters	116.83B	20.91B
Checkpoint Size	60.8GiB	12.8GiB

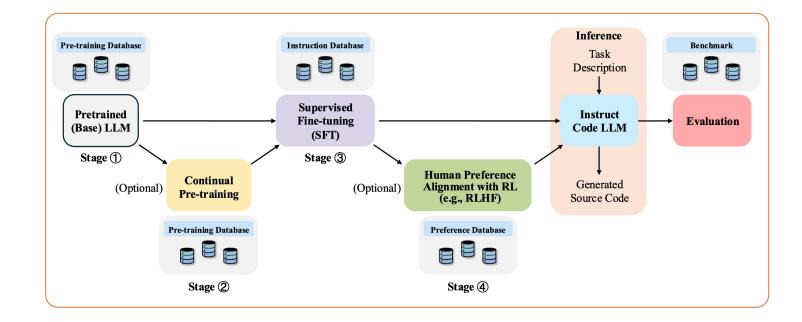
Gemma 3 Technical Report

Gemma Team, Google DeepMind¹

Google DeepMind

Today's Agenda

- Pre-training stage
 - Model architecture
 - Pre-training dataset
 - Learning objectives
 - Evaluation dataset
- Special topics
 - Post-training staging
 - Scaling law
 - Hallucination



Pre-training: Dataset

Meta

The Llama 3 Herd of Models

Llama Team, Al @ Meta¹

¹A detailed contribu

Modern artificial int new set of foundatic multilinguality, cod 405B parameters ar empirical evaluation models such as GPT post-trained versions and output safety.' video, and speech ca performs competitiv resulting models are

Date: July 23, 2024

3.2 Model Architecture

Llama 3 uses a standard, dense Transformer architecture (Vaswani et al., 2017). It does not deviate significantly from Llama and Llama 2 (Touvron et al., 2023a,b) in terms of model architecture; our performance gains are primarily driven by improvements in data quality and diversity as well as by increased training scale.

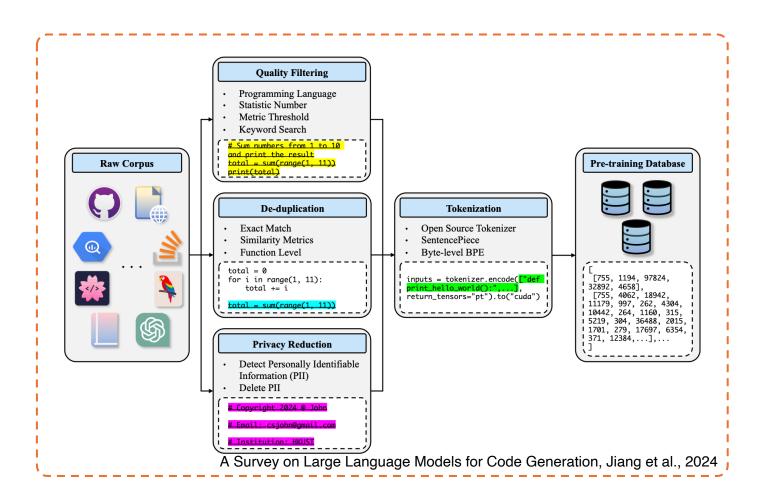
We make a few small modifications compared to Llama 2:

- We use grouped query attention (GQA; Ainslie et al. (2023)) with 8 key-value heads to improve inference speed and to reduce the size of key-value caches during decoding.
- We use an attention mask that prevents self-attention between different documents within the same sequence. We find that this change had limited impact during in standard pre-training, but find it to be important in continued pre-training on very long sequences.

Pre-training: Dataset

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law



- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

Table 4. The statistics of some commonly-used pre-training datasets for LLMs aimed at code generation. The column labeled '#PL' indicates the number of programming languages included in each dataset. It should be noted that in the CodeSearchNet [110] dataset, each file represents a function, and for the Pile [78] and ROOTS [137] datasets, only the code components are considered.

Dataset	Size (GB)	Files (M)	#PL	Date	Link
CodeSearchNet [110]	20	6.5	6	2022-01	https://huggingface.co/datasets/code_search_net
Google BigQuery[96]	-	-	-	2016-06	github-on-bigquery-analyze-all-the-open-source-code
The Pile [78]	95	19	-	2022-01	https://huggingface.co/datasets/EleutherAI/pile
CodeParrot [254]	180	22	1	2021-08	https://huggingface.co/datasets/transformersbook/codeparro
GitHub Code[254]	1,024	115	32	2022-02	https://huggingface.co/datasets/codeparrot/github-code
ROOTS [137]	163	15	13	2023-03	https://huggingface.co/bigscience-data
The Stack [132]	3,136	317	30	2022-10	https://huggingface.co/datasets/bigcode/the-stack
The Stack v2 [170]	32K	3K	619	2024-04	https://huggingface.co/datasets/bigcode/the-stack-v2

A Survey on Large Language Models for Code Generation, Jiang et al., 2024

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

Meta

The Llama 3 Herd of Models

Llama Team, Al @ Meta1

¹A detailed contributor list can be found in the appendix of this paper.

Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.

Date: July 23, 2024

Website: https://llama.meta.com/

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

Meta

The Llama 3 Herd of Models

Llama Team, Al @ Meta¹

¹A detailed contributor list can be found in the appendix of this paper

Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input

3.1 Pre-Training Data

We create our dataset for language model pre-training from a variety of data sources containing knowledge until the end of 2023. We apply several de-duplication methods and data cleaning mechanisms on each data source to obtain high-quality tokens. We remove domains that contain large amounts of personally identifiable information (PII), and domains with known adult content.

3.1.1 Web Data Curation

Much of the data we utilize is obtained from the web and we describe our cleaning process below.

PII and safety filtering. Among other mitigations, we implement filters designed to remove data from websites are likely to contain unsafe content or high volumes of PII, domains that have been ranked as harmful according to a variety of Meta safety standards, and domains that are known to contain adult content.

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

DeepSeek-AI

 ${\tt research@deepseek.com}$

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

DeepSeek-V2: A Strong, Economical, and Efficient

3.1.1. Data Construction

While maintaining the same data processing stages as for DeepSeek 67B (DeepSeek-AI, 2024), we extend the amount of data and elevate the data quality. In order to enlarge our pre-training corpus, we explore the potential of the internet data and optimize our cleaning processes, thus recovering a large amount of mistakenly deleted data. Moreover, we incorporate more Chinese data, aiming to better leverage the corpus available on the Chinese internet. In addition to the amount of data, we also focus on the data quality. We enrich our pre-training corpus with high-quality data from various sources, and meanwhile improve the quality-based filtering algorithm. The improved algorithm ensures that a large amount of non-beneficial data will be removed, while the valuable data will be mostly retained. In addition, we filter out the contentious content from our pre-training corpus to mitigate the data bias introduced from specific regional cultures. A detailed discussion about the influence of this filtering strategy is presented in Appendix E

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

DeepSeek-V3 Technical Report

4.1. Data Construction

Compared with DeepSeek-V2, we optimize the pre-training corpus by enhancing the ratio of mathematical and programming samples, while expanding multilingual coverage beyond

English and Chinese. Also, our data processing pipeline is refined to minimize redundancy while maintaining corpus diversity. Inspired by Ding et al. (2024), we implement the document packing method for data integrity but do not incorporate cross-sample attention masking during training. Finally, the training corpus for DeepSeek-V3 consists of 14.8T high-quality and diverse tokens in our tokenizer.

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

Meta

The Llama 3 Herd of Models

Llama Team, Al @ Meta1

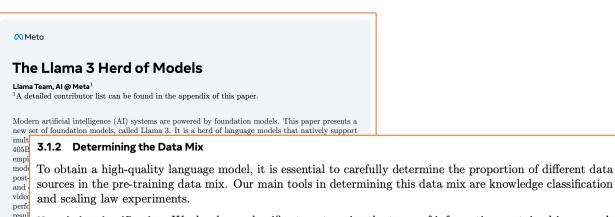
¹A detailed contributor list can be found in the appendix of this paper.

Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.

Date: July 23, 2024

Website: https://llama.meta.com/

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law



Knowledge classification. We develop a classifier to categorize the types of information contained in our web data to more effectively determine a data mix. We use this classifier to downsample data categories that are over-represented on the web, for example, arts and entertainment.

Scaling laws for data mix. To determine the best data mix, we perform scaling law experiments in which we train several small models on a data mix and use that to predict the performance of a large model on that mix (see Section 3.2.1). We repeat this process multiple times for different data mixes to select a new data mix candidate. Subsequently, we train a larger model on this candidate data mix and evaluate the performance of that model on several key benchmarks.

Data mix summary. Our final data mix contains roughly 50% of tokens corresponding to general knowledge, 25% of mathematical and reasoning tokens, 17% code tokens, and 8% multilingual tokens.

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

DeepSeek-Coder: When the Large Language Model Meets Programming - The Rise of Code Intelligence

Daya Guo*1, Qihao Zhu*1,2, Dejian Yang¹, Zhenda Xie¹, Kai Dong¹, Wentao Zhang¹ Guanting Chen¹, Xiao Bi¹, Y. Wu¹, Y.K. Li¹, Fuli Luo¹, Yingfei Xiong², Wenfeng Liang¹

¹DeepSeek-AI

²Key Lab of HCST (PKU), MOE; SCS, Peking University {zhuqh, guodaya}@deepseek.com
https://github.com/deepseek-ai/DeepSeek-Coder

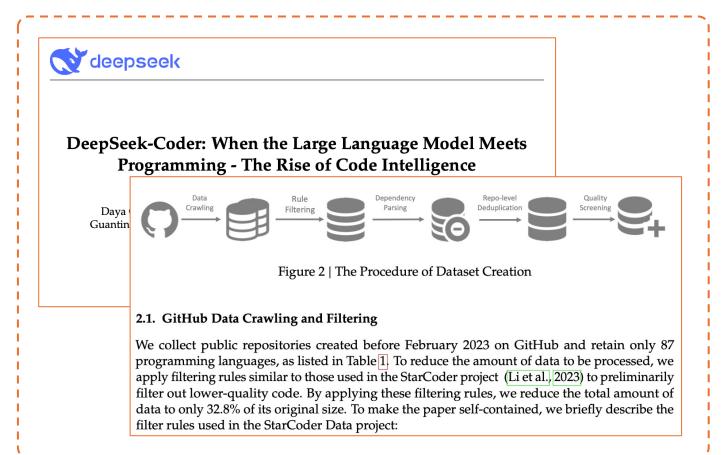
- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

DeepSeek-Coder: When the Large Language Model Meets Programming - The Rise of Code Intelligence

2. Data Collection

The training dataset of DeepSeek-Coder is composed of 87% source code, 10% English coderelated natural language corpus, and 3% code-unrelated Chinese natural language corpus. The English corpus consists of materials from GitHub's Markdown and StackExchange which are used to enhance the model's understanding of code-related concepts and improve its ability to handle tasks like library usage and bug fixing. Meanwhile, the Chinese corpus consists of high-quality articles aimed at improving the model's proficiency in understanding the Chinese language. In this section, we will provide an overview of how we construct the code training data. This process involves data crawling, rule-based filtering, dependency parsing, repository-level deduplication, and quality screening, as illustrated in Figure In the following, we will describe the data creation procedure step by step.

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law



- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

DeepSeek-Coder: When the Large Language Model Meets Programming - The Rise of Code Intelligence

D

2.2. Dependency Parsing

In previous works (Chen et al.) 2021; Li et al., 2023; Nijkamp et al., 2022; Roziere et al., 2023), large language models for code are mainly pre-trained on file-level source code, which ignores the dependencies between different files in a project. However, in practical applications, such models struggle to effectively scale to handle entire project-level code scenarios. Therefore, we will consider how to leverage the dependencies between files within the same repository in this step. Specifically, we first parse the dependencies between files and then arrange these files in an order that ensures the context each file relies on is placed before that file in the input sequence. By aligning the files in accordance with their dependencies, our dataset more accurately represents real coding practices and structures. This enhanced alignment not only makes our dataset more relevant but also potentially increases the practicality and applicability of the model in handling project-level code scenarios. It's worth noting that we only consider the invocation relationships between files and use regular expressions to extract them, such as "import" in Python, "using" in C#, and "include" in C.

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

Code Llama: Open Foundation Models for Code

Baptiste Rozière[†], Jonas Gehring[†], Fabian Gloeckle^{†,*}, Sten Sootla[†], Itai Gat, Xiaoqing Ellen Tan, Yossi Adi^o, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve[†]

Meta AI

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

Code Llama: Open Foundation Models for Code

Baptiste Rozière[†], Jonas Gehring[†], Fabian Gloeckle^{†,*}, Sten Sootla[†], Itai Gat, Xiaoqing Ellen Tan, Yossi Adi^o, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve[†]

Dataset	Sampling prop.	Epochs	Disk size
Code Llama (500B tokens)			
Code	85%	2.03	859 GB
Natural language related to code	e 8%	1.39	78 GB
Natural language	7%	0.01	$3.5~\mathrm{TB}$
Code Llama - Python (addi	tional 100B to	kens)	
Python	75%	3.69	79 GB
Code	10%	0.05	$859~\mathrm{GB}$
Natural language related to code	= 10%	0.35	78 GB
Natural language	5%	0.00	$3.5~\mathrm{TB}$

Table 1: Training dataset of Code Llama and Code Llama - Python. We train Code Llama on 500B additional tokens and Code Llama - Python further on 100B tokens.

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

Datasets are classified as:

- Training dataset
- Validation dataset
- Testing dataset (evaluation benchmarks)

Training dataset should not be polluted by validation and testing data samples.

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

Investigating Data Contamination for Pre-training Language Models

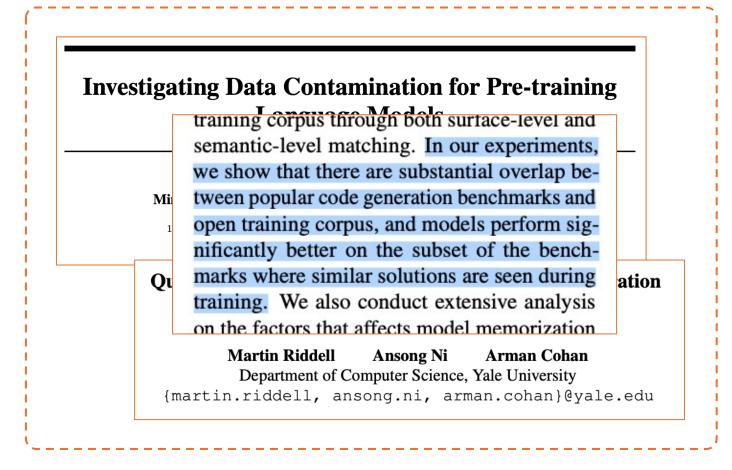
Minhao Jiang¹, Ken Ziyu Liu², Ming Zhong¹, Rylan Schaeffer², Siru Ouyang¹, Jiawei Han¹, Sanmi Koyejo²

¹University of Illinois Urbana-Champaign ²Stanford University minhaoj2@illinois.edu

Quantifying Contamination in Evaluating Code Generation Capabilities of Language Models

Martin Riddell Ansong Ni Arman Cohan
Department of Computer Science, Yale University
{martin.riddell, ansong.ni, arman.cohan}@yale.edu

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law



- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

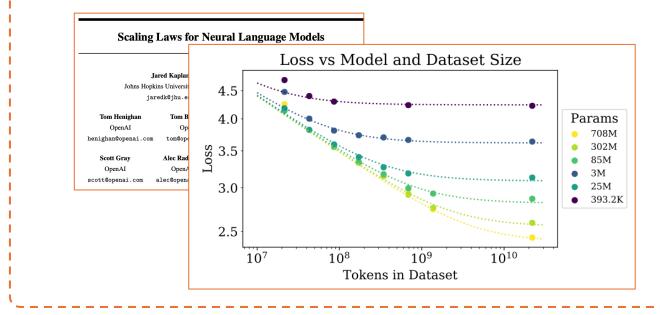
- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

The scaling law concept is about finding predictable, quantitative relationships between model performance and scale factors, without having to train every possible configuration.

Scaling Laws for Neural Language Models							
	ared Kaplan * kins University, OpenAI	Sam McCandlish*					
	redk@jhu.edu	OpenAI sam@openai.com					
Tom Henighan	Tom B. Brown	Benjamin Chess	Rewon Child				
OpenAI	OpenAI	OpenAI	OpenAI				
henighan@openai.com	tom@openai.com	bchess@openai.com	rewon@openai.com				
Scott Gray	Alec Radford	Jeffrey Wu	Dario Amodei				
OpenAI	OpenAI	OpenAI	OpenAI				
scott@openai.com	alec@openai.com	jeffwu@openai.com	damodei@openai.com				

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

The scaling law concept is about finding predictable, quantitative relationships between model performance and scale factors, without having to train every possible configuration.



- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

Meta

The Llama 3 Herd of Models

Llama Team, Al @ Meta1

¹A detailed contributor list can be found in the appendix of this paper.

Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.

Scaling laws for data mix. To determine the best data mix, we perform scaling law experiments in which we train several small models on a data mix and use that to predict the performance of a large model on that mix (see Section 3.2.1). We repeat this process multiple times for different data mixes to select a new data mix candidate. Subsequently, we train a larger model on this candidate data mix and evaluate the performance of that model on several key benchmarks.

- Dimensions:
 - Data curation
 - Size and data mix
- Key considerations:
 - Specializing for coding
 - Data pollution
 - Scaling law

Meta The Llama 3 Herd of Models Llama Team, AI @ Meta1 ¹A detailed contributor list can be found in the appendix of th Modern artificial intelligence (AI) systems are powered by four new set of foundation models, called Llama 3. It is a herd of la multilinguality, coding, reasoning, and tool usage. Our larger 405B parameters and a context window of up to 128K toker empirical evaluation of Llama 3. We find that Llama 3 delivers of models such as GPT-4 on a plethora of tasks. We publicly release post-trained versions of the 405B parameter language model an and output safety. The paper also presents the results of expe

> Date: July 23, 2024 Website: https://llama.meta.com/

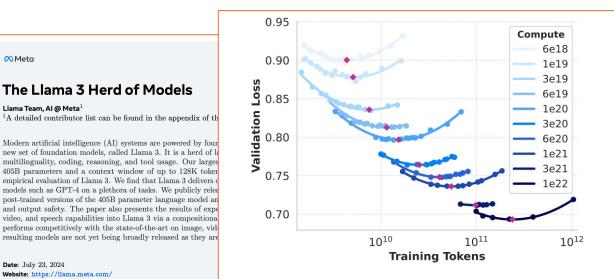
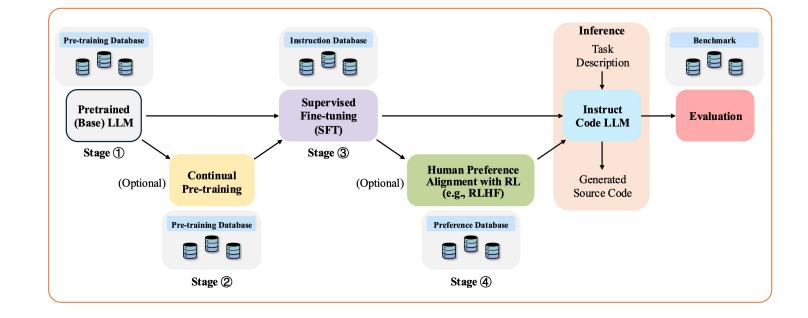


Figure 2 Scaling law IsoFLOPs curves between 6×10^{18} and 10^{22} FLOPs. The loss is the negative loglikelihood on a held-out validation set. We approximate measurements at each compute scale using a second degree polynomial.

Today's Agenda

- Pre-training stage
 - Model architecture
 - Pre-training dataset
 - Learning objectives
 - Evaluation dataset
- Special topics
 - Post-training staging
 - Scaling law
 - Hallucination



- Causal Language Modeling
 - Next token prediction
 - Infilling
- Auxiliary pre-training tasks
 - Masked token prediction
 - (Coding) Masked identifier prediction
 - (Coding) Identifier tagging
 - (Coding) Text-code matching
 - (Coding) Text-code contrastive learning

- Learning Objective (Machine Learning 101)
 - Loss function $\mathcal{L}(\mathbf{x};\theta)$ where θ is the model parameter

$$\theta = \operatorname{argmin}_{\theta} \sum_{\mathbf{x} \in \mathcal{D}} \mathcal{L}(\mathbf{x}; \theta)$$

- Learning Objective (Machine Learning 101)
 - Loss function $\mathcal{L}(\mathbf{x}; \theta)$ where θ is the model parameter

$$\theta = \operatorname{argmin}_{\theta} \sum_{\mathbf{x} \in \mathcal{D}} \mathcal{L}(\mathbf{x}; \theta)$$

Next-token prediction

$$\mathcal{L}(\mathbf{x}; \theta) = \sum_{i=1}^{n} -\log P_{\theta}(x_i \mid \mathbf{x}_{< i})$$

- Learning Objective (Machine Learning 101)
 - Loss function $\mathcal{L}(\mathbf{x};\theta)$ where θ is the model parameter

$$\theta = \operatorname{argmin}_{\theta} \sum_{\mathbf{x} \in \mathcal{D}} \mathcal{L}(\mathbf{x}; \theta)$$

Next-token prediction

$$\mathcal{L}(\mathbf{x}; \theta) = \sum_{i=1}^{n} -\log P_{\theta}(x_i \mid \mathbf{x}_{< i})$$

• Example [for, i, in, range, (, 10,), :, print, (] i x_{i} x_{i} $P_{\theta}(x_{i} \mid \mathbf{X}_{c_{i}})$

- Next-token prediction
 - Taking prefix $\mathbf{x}_{< i}$ and predict the next token \mathbf{x}_{i}
 - But what about code editing happening in the middle?

```
impl NodeVisitor<Variable> for LocalTypingContext {
150
          fn visit(&mut self, node: &Variable) {
              // Collect the variable
              if let Some(local_path: String) = FIRPath::from_ast(path: node.name()).local_path() {
153
                   self &mut LocalTypingContext
                       .variables HashMap<String, Vec<NodeLocation>>
154
                       .entry(key: local_path) Entry<'_, String, Vec<NodeLocation>>
155
156
                       .or_insert(default: vec![]) &mut Vec<NodeLocation>
                       .push(node.location().clone());
158
159
160
               let path = FIRPath::from_ast(node.name());
161
               // Add the variable constraint to the context
              self.constraints.push(TypeConstraint::Variable {
                  node: node.location().clone(),
164
                   variable: FIRPath::from_ast(path: node.name()),
              });
167
```

- Next-token prediction
 - Taking prefix $\mathbf{x}_{< i}$ and predict the next token \mathbf{x}_{i}
 - But what about code editing happening in the middle?
- Infilling
 - Assume prefix $\mathbf{x}_{< i}$ and suffix $\mathbf{x}_{> j}$, predict the middle infill $\mathbf{x}_{i:j}$
 - Idea: reduce the problem of infilling to next-token prediction

DeepSeek-Coder: When the Large Language Model Meets Programming - The Rise of Code Intelligence

Daya Guo*¹, Qihao Zhu*^{1,2}, Dejian Yang¹, Zhenda Xie¹, Kai Dong¹, Wentao Zhang¹ Guanting Chen¹, Xiao Bi ¹, Y. Wu¹, Y.K. Li¹, Fuli Luo¹, Yingfei Xiong², Wenfeng Liang¹

DeepSeek-Coder: When the Large Language Model Meets Programming - The Rise of Code Intelligence

Daya Guo*¹, Qihao Zhu*^{1,2}, Dejian Yang¹, Zhenda Xie¹, Kai Dong¹, Wentao Zhang¹ Guanting Chen¹, Xiao Bi ¹, Y. Wu¹, Y.K. Li¹, Fuli Luo¹, Yingfei Xiong², Wenfeng Liang¹

In our implementation, we have introduced three sentinel tokens specifically for this task. For each code file, we initially divide its content into three segments, denoted as f_{pre} , f_{middle} , and f_{suf} . Using the PSM mode, we construct the training example as follows:

$$<$$
 | fim_start | $>$ f_pre $<$ | fim_hole | $>$ f_suf $<$ | fim_end | $>$ f_middle $<$ | eos_token | $>$

We implement the Fill-in-the-Middle (FIM) method at the document level before the packing process, as proposed in the original work by Bavarian et al. (2022). This is done with an FIM rate of 0.5, following the PSM mode.

Code Llama: Open Foundation Models for Code

Baptiste Rozière[†], Jonas Gehring[†], Fabian Gloeckle^{†,*}, Sten Sootla[†], Itai Gat, Xiaoqing Ellen Tan, Yossi Adi[⋄], Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, Gabriel Synnaeve[†]

Meta AI

Code Llama: Open Foundation Models for Code

2.3 Infilling

Bapt Ellen Kozh Grat Louis

Code infilling is the task of predicting the missing part of a program given a surrounding context. Applications include code completion at the cursor's position in code IDEs, type inference and generation of in-code documentation (e.g., docstrings).

We train infilling models following the concept of causal masking (Aghajanyan et al., 2022; Fried et al., 2023), where parts of a training sequence are moved to the end, and the reordered sequence is predicted autoregressively. We train the general-purpose 7B, 13B and 70B models with an infilling objective, following the recommendations of Bavarian et al. (2022). More precisely, we split training documents at the character level into a prefix, a middle part and a suffix with the splitting locations sampled independently from a uniform distribution over the document length. We apply this transformation with a probability of 0.9 and to documents that are not cut across multiple model contexts only. We randomly format half of the splits in the prefix-suffix-middle (PSM) format and the other half in the compatible suffix-prefix-middle (SPM) format described in Bavarian et al. (2022, App. D). We extend LLAMA 2's tokenizer with four special tokens that mark the beginning of the prefix, the middle part or the suffix, and the end of the infilling span. To limit the distribution shift between autoregressive and infilling training, we suppress the implicit leading space that SentencePiece tokenizers add upon encoding the middle part and the suffix (Kudo & Richardson, 2018). In SPM format, we concatenate the prefix and the middle part before encoding to tokens. Note that our model doesn't encounter split subtokens in the SPM format while it does in the PSM format.

Results on the effect of infilling training on downstream generation tasks and the performance of our infilling models on infilling benchmarks are reported in Section 3.2.

Code Llama: Open Foundation Models for Code

2.3 Infilling

Baptis Ellen Kozhe Gratta Louis

Code infilling is the task of predicting the missing part of a program given a surrounding context. Applications at, Xiaoqing include code completion at the cursor's position in code IDEs, type inference and generation of in-code documentation

pin, Artvom

We train infilli
2023), where pa
autoregressively
the recommenda
level into a pre
uniform distrib
to documents the
the prefix-suffix-
described in Ba
mark the begins
distribution shi
SentencePiece t
SPM format, we
doesn't encount

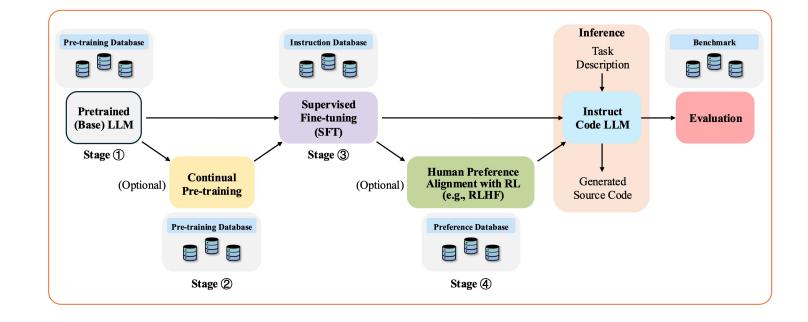
Results on the models on infill

1	<u></u>									
iı	Model	FIM	Size		HumanEv	val		Test loss		
y y				pass@1	pass@10	pass@100	pass@1	pass@10	pass@100	
l	CODE LLAMA (w/o LCFT)	¥	7B	33.2%	43.3%	49.9%	44.8%	52.5%	57.1%	0.408
)1	CODE LLAMA (W/O LCF 1)		13B	36.8%	49.2%	57.9%	48.2%	57.4%	61.6%	0.372
r.	CODE LLAMA (w/o LCFT)	,	7B	33.6%	44.0%	48.8%	44.2%	51.4%	55.5%	0.407
a	CODE LLAMA (W/O LCF 1)	•	13B	36.2%	48.3%	54.6%	48.0%	56.8%	60.8%	0.373
i	Abgaluta gan	v /	7B	-0.4%	-0.7%	1.1%	0.6%	1.1%	1.6%	0.001
t 70	Absolute gap	V - V	13B	0.7%	0.9%	3.3%	0.2%	0.6%	0.8%	-0.001

Table 5: Comparison of models with and without FIM training. pass@1, pass@10 and pass@100 scores on HumanEval and MBPP evaluated at temperature 0.1 for models trained with and without infilling (FIM) objective. Infilling training incurs no cost on autoregressive test set loss, but a small cost on HumanEval and MBPP pass@k metrics that is aggravated at higher sample counts k. The models are compared prior to long context fine-tuning (LCFT).

Today's Agenda

- Pre-training stage
 - Model architecture
 - Pre-training dataset
 - Learning objectives
 - Evaluation dataset
- Special topics
 - Post-training staging
 - Scaling law
 - Hallucination



Evaluation Benchmark

• Coding benchmarks can be used to evaluate LLMs' abilities

Category	Benchmark	Llama 3 8B	Gemma 2 9B	Mistral 7B	Llama 3 70B	Mixtral 8x22B	GPT 3.5 Turbo	Llama 3 405B	Nemotron 4 340B	GPT-4 (0125)	GPT-40	Claude 3.5 Sonnet
	MMLU (5-shot)	69.4	72.3	61.1	83.6	76.9	70.7	87.3	82.6	85.1	89.1	89.9
General	MMLU (0-shot, CoT)	73.0	72.3^{\triangle}	60.5	86.0	79.9	69.8	88.6	78.7^{\triangleleft}	85.4	88.7	88.3
General	MMLU-Pro (5-shot, CoT)	48.3	_	36.9	66.4	56.3	49.2	73.3	62.7	64.8	74.0	77.0
	IFEval	80.4	73.6	57.6	87.5	72.7	69.9	88.6	85.1	84.3	85.6	88.0
Code	HumanEval (0-shot)	72.6	54.3	40.2	80.5	75.6	68.0	89.0	73.2	86.6	90.2	92.0
Code	MBPP EvalPlus (0-shot)	72.8	71.7	49.5	86.0	78.6	82.0	88.6	72.8	83.6	87.8	90.5
Math	GSM8K (8-shot, CoT)	84.5	76.7	53.2	95.1	88.2	81.6	96.8	92.3^{\diamondsuit}	94.2	96.1	96.4^{\diamondsuit}
Math	MATH (0-shot, CoT)	51.9	44.3	13.0	68.0	54.1	43.1	73.8	41.1	64.5	76.6	71.1
Decemina	ARC Challenge (0-shot)	83.4	87.6	74.2	94.8	88.7	83.7	96.9	94.6	96.4	96.7	96.7
Reasoning	GPQA (0-shot, CoT)	32.8	_	28.8	46.7	33.3	30.8	51.1	_	41.4	53.6	59.4
Tool use	BFCL	76.1	_	60.4	84.8	_	85.9	88.5	86.5	88.3	80.5	90.2
100i use	Nexus	38.5	30.0	24.7	56.7	48.5	37.2	58.7	_	50.3	56.1	45.7
	ZeroSCROLLS/QuALITY	81.0	_	_	90.5	-	_	95.2	_	95.2	90.5	90.5
Long context	InfiniteBench/En.MC	65.1	_	_	78.2	_	_	83.4	_	72.1	82.5	_
	NIH/Multi-needle	98.8	_	_	97.5	_	_	98.1	_	100.0	100.0	90.8
Multilingual	MGSM (0-shot, CoT)	68.9	53.2	29.9	86.9	71.1	51.4	91.6	_	85.9	90.5	91.6

Evaluation Benchmark

Scenario	Benchmark	Size	#PL	Date	Link
	HumanEval [48]	164	Python	2021-07	https://huggingface.co/datasets/openai_humaneval
	HumanEval+ [162]	164	Python	2023-05	https://huggingface.co/datasets/evalplus/humanevalplus
	HumanEvalPack [187]	164	6	2023-08	https://huggingface.co/datasets/bigcode/humanevalpack
	MBPP [17]	974	Python	2021-08	https://huggingface.co/datasets/mbpp
	MBPP+ [162]	378	Python	2023-05	https://huggingface.co/datasets/evalplus/mbppplus
	CoNaLa [297]	596.88K	Python	2018-05	https://huggingface.co/datasets/neulab/conala
	Spider [300]	8,034	SQL	2018-09	https://huggingface.co/datasets/xlangai/spider
General	CONCODE [113]	104K	Java	2018-08	https://huggingface.co/datasets/AhmedSSoliman/CONCOD
	ODEX [273]	945	Python	2022-12	https://huggingface.co/datasets/neulab/odex
	CoderEval [299]	460	Python, Java	2023-02	https://github.com/CoderEval/CoderEval
	ReCode [263]	1,138	Python	2022-12	https://github.com/amazon-science/recode
	StudentEval [19]	1,749	Python	2023-06	https://huggingface.co/datasets/wellesley-easel/StudentEval
	BigCodeBench [333]	1,140	Python	2024-06	https://huggingface.co/datasets/bigcode/bigcodebench
	ClassEval [72]	100	Python	2023-08	https://huggingface.co/datasets/FudanSELab/ClassEval
	NaturalCodeBench [314]	402	Python, Java	2024-05	https://github.com/THUDM/NaturalCodeBench
	APPS [95]	10,000	Python	2021-05	https://huggingface.co/datasets/codeparrot/apps
Competitions	CodeContests [151]	13,610	C++, Python, Java	2022-02	$https://hugging face.co/datasets/deepmind/code_contests$
	LiveCodeBench [188]	713 Updating	Python	2024-03	https://github.com/LiveCodeBench/LiveCodeBench
	DSP [41]	1,119	Python	2022-01	https://github.com/microsoft/DataScienceProblems
Data Science	DS-1000 [136]	1,000	Python	2022-11	https://huggingface.co/datasets/xlangai/DS-1000
	ExeDS [107]	534	Python	2022-11	https://github.com/Jun-jie-Huang/ExeDS

	MBXP [16]	12.4K	13	2022-10	https://huggingface.co/datasets/mxeval/mbxp
	Multilingual HumanEval [16]	1.9K	12	2022-10	https://huggingface.co/datasets/mxeval/multi-humaneval
Multilingual			Python, C++,		
	HumanEval-X [321]	820	Java, JavaScript,	2023-03	https://huggingface.co/datasets/THUDM/humaneval-x
			Go		
	MultiPL-E [39]	161	18	2022-08	https://huggingface.co/datasets/nuprl/MultiPL-E
	xCodeEval [128]	5.5M	11	2023-03	https://github.com/ntunlp/xCodeEval
	MathQA-X [16]	5.6K	Python, Java, JavaScript	2022-10	https://huggingface.co/datasets/mxeval/mathqa-x
	MathQA-Python [17]	23,914	Python	2021-08	https://github.com/google-research/google-research
Reasoning	GSM8K [58]	8.5K	Python	2021-10	https://huggingface.co/datasets/gsm8k
	GSM-HARD [79]	1.32K	Python	2022-11	https://huggingface.co/datasets/reasoning-machines/gsm-hard
	CRUXEval [82]	800	Python	2024-01	https://huggingface.co/datasets/cruxeval-org/cruxeval
	RepoEval [309]	3,573	Python, Java	2023-03	https://paperswithcode.com/dataset/repoeval
	Stack-Repo [239]	200	Java	2023-06	https://huggingface.co/datasets/RepoFusion/Stack-Repo
	Repobench [167]	27k	Python, Java	2023-01	https://github.com/Leolty/repobench
Repository	EvoCodeBench [144]	275	Python	2024-03	https://huggingface.co/datasets/LJ0815/EvoCodeBench
	SWE-bench [123]	2,294	Python	2023-10	https://huggingface.co/datasets/princeton-nlp/SWE-bench
	CrossCodeEval [68]	10K	Python, Java, TypeScript, C#	2023-10	https://github.com/amazon-science/cceval
	SketchEval [308]	20,355	Python	2024-03	https://github.com/nl2code/codes

Evaluation Benchmark: HumanEval

Evaluating Large Language Models Trained on Code

Mark Chen *1 Jerry Tworek *1 Heewoo Jun *1 Qiming Yuan *1 Henrique Ponde de Oliveira Pinto *1

Jared Kaplan *2 Harri Edwards 1 Yuri Burda 1 Nicholas Joseph 2 Greg Brockman 1 Alex Ray 1 Raul Puri 1

Gretchen Krueger 1 Michael Petrov 1 Heidy Khlaaf 3 Girish Sastry 1 Pamela Mishkin 1 Brooke Chan 1

Scott Gray 1 Nick Ryder 1 Mikhail Pavlov 1 Alethea Power 1 Lukasz Kaiser 1 Mohammad Bavarian 1

Clemens Winter 1 Philippe Tillet 1 Felipe Petroski Such 1 Dave Cummings 1 Matthias Plappert 1

Fotios Chantzis 1 Elizabeth Barnes 1 Ariel Herbert-Voss 1 William Hebgen Guss 1 Alex Nichol 1 Alex Paino 1

Nikolas Tezak 1 Jie Tang 1 Igor Babuschkin 1 Suchir Balaji 1 Shantanu Jain 1 William Saunders 1

Christopher Hesse 1 Andrew N. Carr 1 Jan Leike 1 Josh Achiam 1 Vedant Misra 1 Evan Morikawa 1

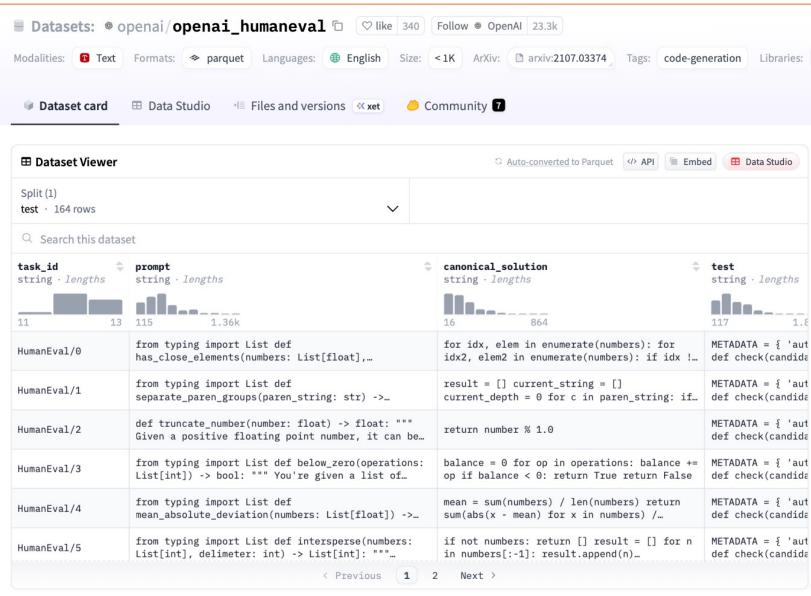
Alec Radford 1 Matthew Knight 1 Miles Brundage 1 Mira Murati 1 Katie Mayer 1 Peter Welinder 1

Bob McGrew 1 Dario Amodei 2 Sam McCandlish 2 Ilya Sutskever 1 Wojciech Zaremba 1

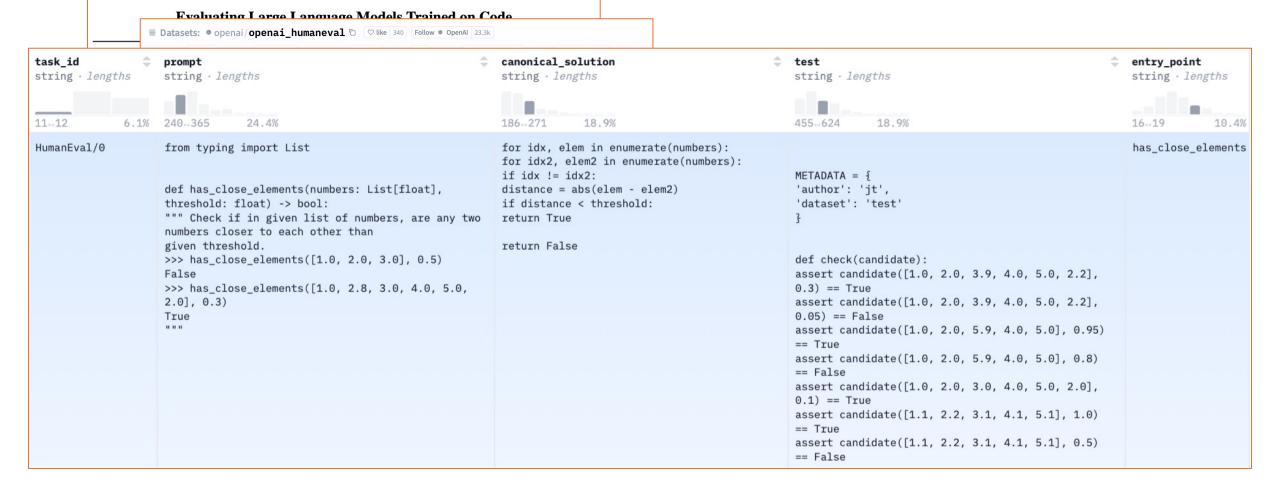
Evalu

Evaluati

Mark Chen * ¹ Jerry Two
Jared Kaplan * ² Harri Edwa
Gretchen Krueger ¹ Micha
Scott Gray ¹ Nick Ryder ¹
Clemens Winter ¹ Phili
Fotios Chantzis ¹ Elizabeth B
Nikolas Tezak ¹ Jie Tang
Christopher Hesse ¹ And
Alec Radford ¹ Matthew
Bob McGrew ¹ Dar



Evaluation Benchmark: HumanEval



Evaluation Benchmark: MBPP

Program Synthesis with Large Language Models

Jacob Austin*

Augustus Odena*

Maxwell Nye[†]

Maarten Bosma

Henryk Michalewski

David Dohan

Ellen Jiang

Carrie Cai

Michael Terry

Quoc Le

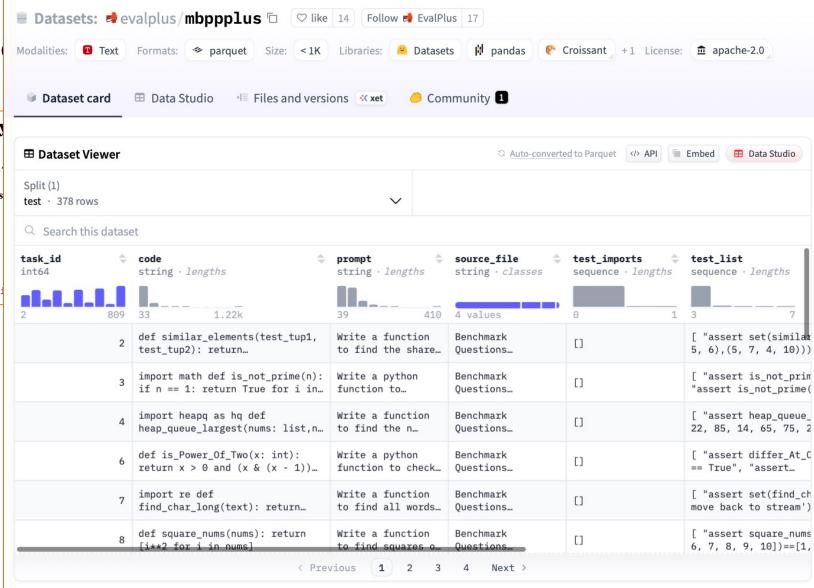
Charles Sutton

Google Research * denotes equal contribution jaaustin@google.com, augustusodena@google.com

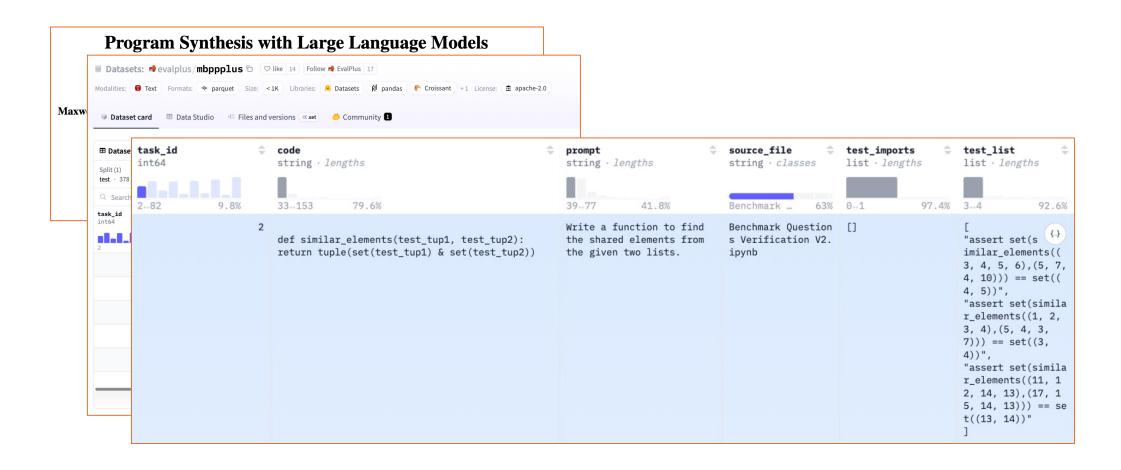
Evalu

Program Sy Jacob A Maxwell Nye† Maarten Bos Michael Terry

jaaust:

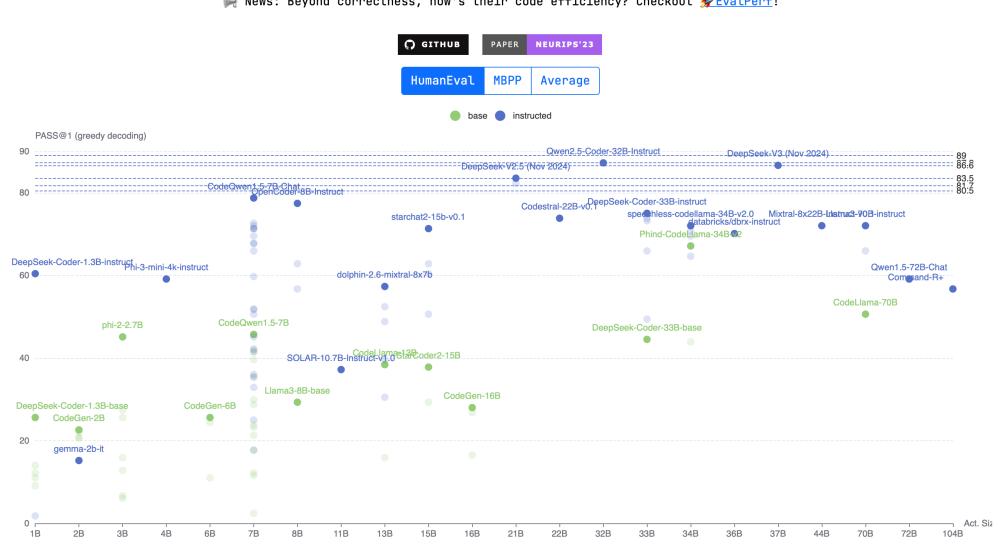


Evaluation Benchmark: MBPP



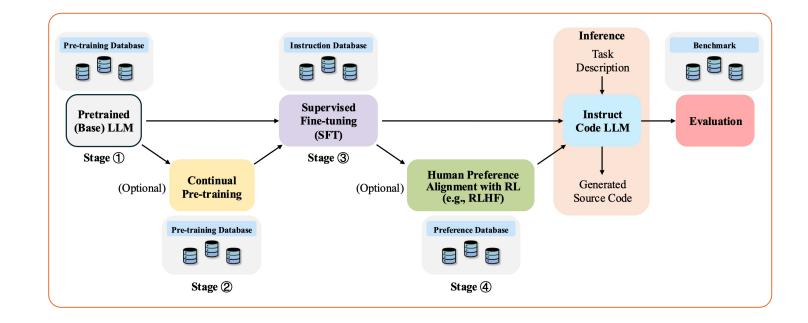
EvalPlus evaluates AI Coders with rigorous tests.

News: Beyond correctness, how's their code efficiency? Checkout ****EvalPerf**!



Today's Agenda

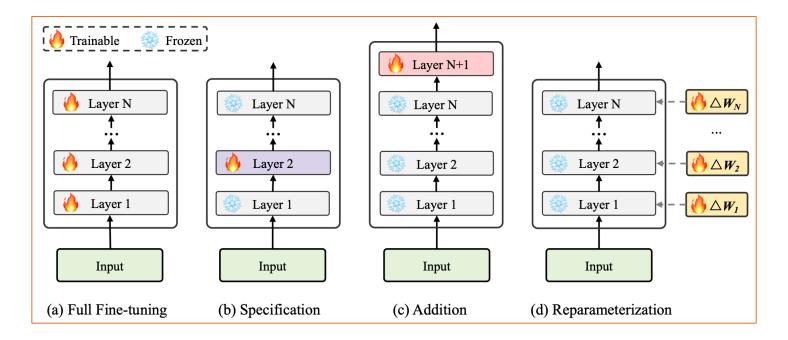
- Pre-training stage
 - Model architecture
 - Pre-training dataset
 - Learning objectives
 - Evaluation dataset
- Special topics
 - Post-training staging
 - Scaling law
 - Hallucination



Post-Training Staging

- Instruction tuning
- Full parameter fine-tuning (FFT)
- Supervised fine-tuning (SFT)
- Parameter-efficient fine-tuning (PEFT)

- Reinforcement learning (RL)
 - Human Feedback
 - Logical Feedback
 - Compiler Feedback
 - LLM-as-judge Feedback



- "Compute": FLOP
 - FLOP: Floating point operations
 - Total training compute that aggregates over model size, dataset size and training duration
 - Approximation:
 - FLOPs $\approx 6 \times N \times D$
 - N: number of model parameters
 - D: number of dataset tokens
 - Factor 6: forward + backward passes + architecture constants

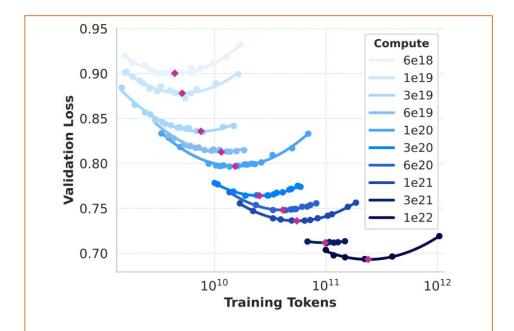


Figure 2 Scaling law IsoFLOPs curves between 6×10^{18} and 10^{22} FLOPs. The loss is the negative log-likelihood on a held-out validation set. We approximate measurements at each compute scale using a second degree polynomial.

Observational Scaling Laws and the Predictability of Language Model Performance

Yangjun Ruan^{1,2,3} yjruan@cs.toronto.edu

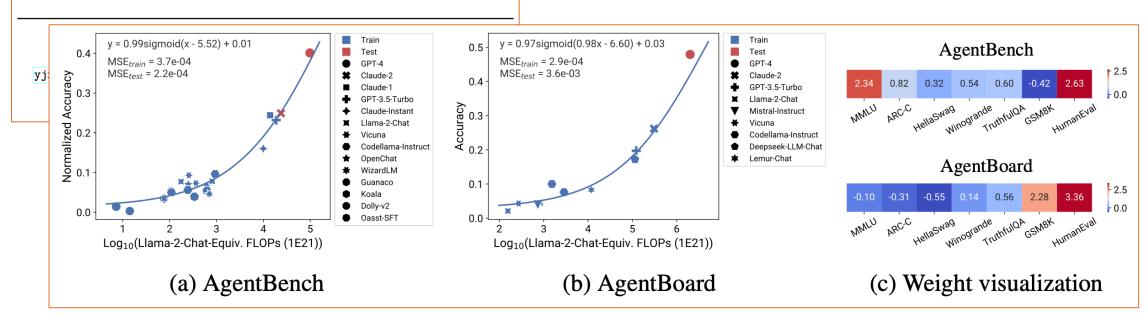
Chris J. Maddison^{2,3} cmaddis@cs.toronto.edu

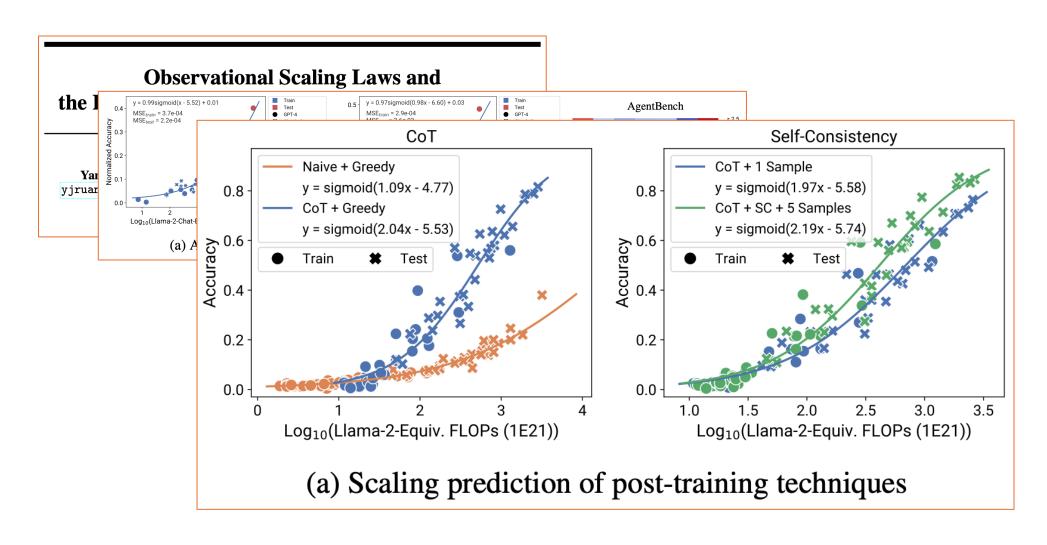
Tatsunori Hashimoto¹ thashim@stanford.edu

¹Stanford University ²University of Toronto

³Vector Institute

Observational Scaling Laws and the Predictability of Language Model Performance



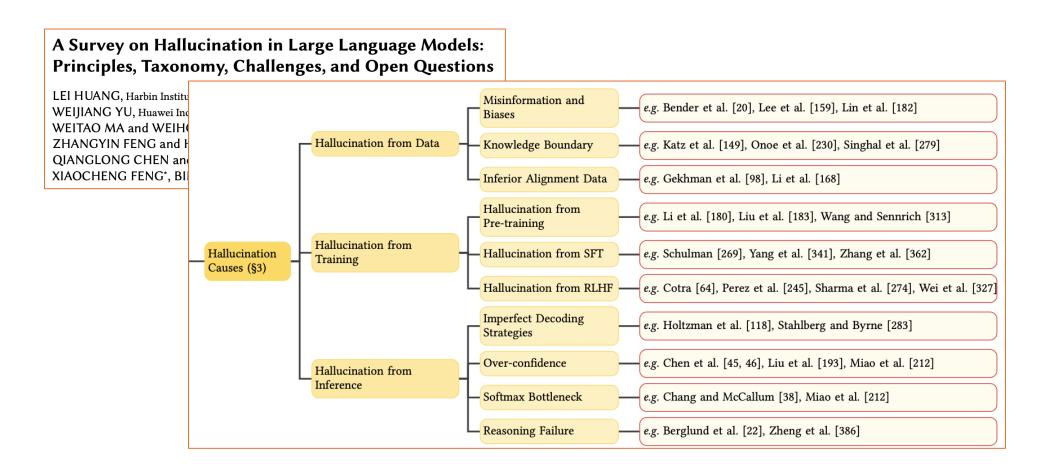


Hallucination

A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions

LEI HUANG, Harbin Institute of Technology, China
WEIJIANG YU, Huawei Inc., China
WEITAO MA and WEIHONG ZHONG, Harbin Institute of Technology, China
ZHANGYIN FENG and HAOTIAN WANG, Harbin Institute of Technology, China
QIANGLONG CHEN and WEIHUA PENG, Huawei Inc., China
XIAOCHENG FENG*, BING QIN, and TING LIU, Harbin Institute of Technology, China

Hallucination



Hallu

Table 1. Examples of each category of LLM hallucinations. Content marked in Red represents the hallucinatory output, while content marked in Blue indicates user instruction or provided context that contradicts the LLM hallucination.

A Survey on Hall								
Princ								
LEI HUA WEIJIAN WEITAC ZHANC QIANG XIAOCH								
	Halluci Inferen							

Hallucination Factual Fabrication Inconsistency Factual Fabrication Inconsis	Category	Type	Example Dialog .	Explanation			
Factuality Hallucination Factuality Hallucination Factuality Hallucination Factual Fabrication Factual Fabrication Factual Fabrication Factual Fabrication Instruction: What are the major environmental impacts of the construction of the Eiffel Tower? Response: The construction of the Eiffel Tower in 1889 led to the extinction of the Parisian tiger, a species that played a crucial role in the region's ecosystem. Additionally, it is widely recognized as the event that sparked the global green architecture movement. Instruction Inconsistency Instruction: Translate the English question into Spanish: What is the capital of France?' Response: The capital of France is Paris. Retrieved context: The Nile is a major north-flowing river in northeastern Africa. It's traditionally considered the longest river in the world. Originating in the Great Lakes region of central Africa, it flows through several countries before emptying into the Mediterranean Sea. Instruction: Solve the equation 2x + 3 = 11 step by step. Logical Inconsistency The response erroneously states that the construction of the Farisian tiger and sparked the global green architecture movement. In fact, there is no evidence of a 'Parisian tiger' er' ever existing, making this a fabricated claim. Moreover, attributing the origins of green architecture to the Eiffel Tower led to the extinction of the Farisian tiger' and sparked the global green architecture movement. In fact, there is no evidence of a 'Parisian tiger' er' ever existing, making this a fabricated claim. Moreover, attributing the origins of green architecture to the Eiffel Tower led to the extinction of the Eiffel Tower led to the extinction of the Farisan tiger' and sparked the global green architecture movement. In fact, there is no evidence of a 'Parisian tiger' ever existing, making this a fabricated claim. The tree to the Eiffel Tower led to the extinction of the Eiffel Tower led to the extinction of the Eiffel Tower led to the extinction of the Eiffel Tower led to the extinction		Factual	Instruction: What are Thomas Edison's main contributions to science and technology?	The response is factually incorrect. In reality, Edison improved the light bulb, building on earlier desi-			
Factuality Hallucination Factual Fabrication Factual Fabrication Instruction: What are the major environmental impacts of the construction of the Eiffel Tower in 1889 led to the extinction of the Eiffel Tower in 1889 led to the extinction of the Parisian tiger, a species that played a crucial role in the region's ecosystem. Additionally, it is widely recognized as the event that sparked the global green architecture movement. Instruction Inconsistency Instruction: Translate the English question into Spanish: "What is the capital of France?" Response: The capital of France is Paris. Retrieved context: The Nile is a major north-flowing river in northeastern Africa. It's traditionally considered the longest river in the world. Originating in the Great Lakes region of central Africa, it flows through several countries before emptying into the Mediterranean Sea. Response: The Nile originates from the mountain ranges of central Africa and flows into the Mediterranean. Instruction: Solve the equation 2x + 3 = 11 step by step. Logical Inconsistency Step 2: Divide both sides by 2 to get: x = 3. So the result Inconsistency Instruction: What are the major environmental impacts of the Eiffel Tower in 1889 led to the extinction of the Parisian tiger, a spacies that played a crucial sparked the global green architecture movement. In fact, there is no evidence of a 'Parisian tiger, and sparked the global green architecture mover existing, making this a fabricated claim. In the currical role in the region's ecosystem. Additionally, it is widence the event existing, making this a fabricated claim. The user explicitly provided an instruction to translate the English question into Spanish. Instead of performing the translation as instructed, the LLM chose to a single event. The user explicitly provided an instruction to translate the English question into Spanish. Instead of performing the translation as instructed, the LLM chose to a single event. The user explicitly provided an instruction to translate the Englis		Contradiction	Tresponder Thomas Edison developed the first practical tele				
Fabrication Fabrication Fabrication Fabrication Fabrication Instruction Inconsistency Instruction Inconsistency Response: The Capital of France is Paris. Faithfulness Hallucination Context Inconsistency Response: The Nile originates from the Mediterranean Sea. Instruction: Summarize the retrieval document above. Response: The Nile originates from the Mediterranean. Response: The Nile originates from the Mediterranean. Instruction: Solve the equation 2x + 3 = 11 step by step. Logical Response: Step 1: Subtract 3 from both sides to get: 2x = 8. Inconsistency To the Effel Tower is an exaggeration, as this movement has diverse roots and cannot be traced back to a single event. The user explicitly provided an instruction to translate the English question into Spanish. Instead of performing the translation as instructed, the LLM chose to answer the question. The summary incorrectly states that the Nile originates from the "mountain ranges of central Africa." while the paragraph mentions that the Nile originates in the Great Lakes region of central Africa. The first step correctly isolates the term with x to get 2x = 8. However, the next step inaccurately divides 8 by 2 to yield a result of x = 3, which is inconsistent.		Factual		of the Eiffel Tower led to the extinction of the 'Parisian			
Instruction Inconsistency What is the capital of France?" Response: The capital of France is Paris. Retrieved context: The Nile is a major north-flowing river in northeastern Africa. It's traditionally considered the longest river in the world. Originating in the Great Lakes region of central Africa, it flows through several countries before emptying into the Mediterranean Sea. Instruction: Summarize the retrieval document above. Response: The Nile originates from the mountain ranges of central Africa and flows into the Mediterranean. Instruction: Solve the equation 2x + 3 = 11 step by step. Logical Response: Step 1: Subtract 3 from both sides to get: 2x = 8. Inconsistency Step 2: Divide both sides by 2 to get: x = 3. So the result the English question into Spanish. Instead of perform ing the translation as instructed, the LLM chose to answer the question. The summary incorrectly states that the Nile originates from the "mountain ranges of central Africa", while the paragraph mentions that the Nile originates in the Great Lakes region of central Africa. The first step correctly isolates the term with x to get 2x = 8. However, the next step inaccurately divides 8 by 2 to yield a result of x = 3, which is inconsistent.			to the extinction of the Parisian tiger, a species that played a crucial role in the region's ecosystem. Additionally, it is widely recognized as the event that sparked the global green	Moreover, attributing the origins of green architecture to the Eiffel Tower is an exaggeration, as this movement has diverse roots and cannot be traced back			
Retrieved context: The Nile is a major north-flowing river in northeastern Africa. It's traditionally considered the longest river in the world. Originating in the Great Lakes region of central Africa, it flows through several countries before emptying into the Mediterranean Sea. Instruction: Summarize the retrieval document above. Response: The Nile originates from the mountain ranges of central Africa and flows into the Mediterranean. Instruction: Solve the equation 2x + 3 = 11 step by step. Logical Response: Step 1: Subtract 3 from both sides to get: 2x = 8. Inconsistency Step 2: Divide both sides by 2 to get: x = 3. So the result Answer the question. The summary incorrectly states that the Nile originates from the "mountain ranges of central Africa", while the paragraph mentions that the Nile originates in the Great Lakes region of central Africa. The first step correctly isolates the term with x to get 2x = 8. However, the next step inaccurately divides 8 by 2 to yield a result of x = 3, which is inconsistent.		Inconsistency	"What is the capital of France?"	The user explicitly provided an instruction to translate the English question into Spanish. Instead of perform- ing the translation as instructed, the LLM chose to			
Faithfulness Hallucination Context Inconsistency Instruction: Summarize the retrieval document above. Response: The Nile originates from the mountain ranges of central Africa and flows into the Mediterranean. Instruction: Solve the equation 2x + 3 = 11 step by step. Logical Response: Step 1: Subtract 3 from both sides to get: x = 3. So the result in northeastern Africa. It's traditionally considered the longest river in the world. Originating in the Great Lakes region of central Africa, it flows through several countries from the "mountain ranges of central Africa", while the paragraph mentions that the Nile originates in the Great Lakes region of central Africa. The first step correctly isolates the term with x to get 2x = 8. However, the next step inaccurately divides 8 by 2 to yield a result of x = 3, which is inconsistent.			Response: The capital of France is Paris.				
Instruction: Summarize the retrieval document above. Response: The Nile originates from the mountain ranges of central Africa and flows into the Mediterranean. Instruction: Solve the equation 2x + 3 = 11 step by step. Logical Response: Step 1: Subtract 3 from both sides to get: 2x = 8. Inconsistency Step 2: Divide both sides by 2 to get: x = 3. So the result Great Lakes region of central Africa. The first step correctly isolates the term with x to get 2x = 8. However, the next step inaccurately divides 8 by 2 to yield a result of x = 3, which is inconsistent			in northeastern Africa. It's traditionally considered the longest river in the world. Originating in the Great Lakes region of central Africa, it flows through several countries	The summary incorrectly states that the Nile originates from the "mountain ranges of central Africa", while the paragraph mentions that the Nile originates in the			
Instruction: Solve the equation 2x + 3 = 11 step by step. Logical Response: Step 1: Subtract 3 from both sides to get: 2x = 8. Inconsistency Step 2: Divide both sides by 2 to get: x = 3. So the result The first step correctly isolates the term with x to get 2x = 8. However, the next step inaccurately divides 8 by 2 to yield a result of x = 3, which is inconsistent			Instruction: Summarize the retrieval document above.				
Logical Response: Step 1: Subtract 3 from both sides to get: $2x = 8$. However, the next step inaccurately divides Inconsistency Step 2: Divide both sides by 2 to get: $x = 3$. So the result 8 by 2 to yield a result of $x = 3$, which is inconsistent							
Inconsistency Step 2: Divide both sides by 2 to get: $x = 3$. So the result 8 by 2 to yield a result of $x = 3$, which is inconsistent			Instruction: Solve the equation $2x + 3 = 11$ step by step.	The first step correctly isolates the term with x to get			
		-	Step 2: Divide both sides by 2 to get: $x = 3$. So the result	8 by 2 to yield a result of $x = 3$, which is inconsistent			

Hallucination

Exploring and Evaluating Hallucinations in LLM-Powered Code Generation

Fang Liu*, Yang Liu*, Lin Shi[†], Houkun Huang*, Ruifeng Wang*, Zhen Yang[‡], Li Zhang* Zhongqi Li[§], Yuchi Ma[§]

*School of Computer Science and Engineering, Beihang University, Beijing, China

†School of Software, Beihang University, Beijing, China

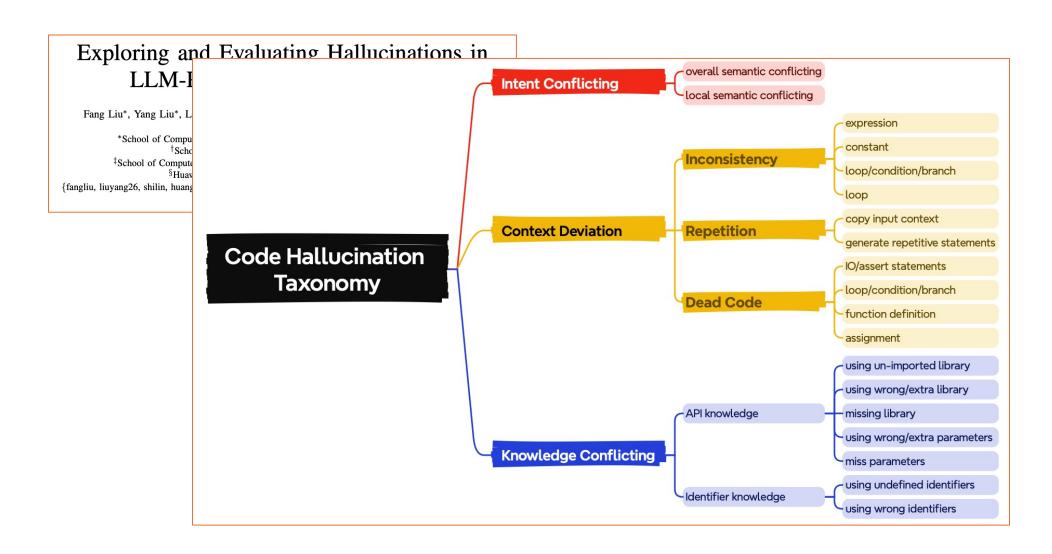
‡School of Computer Science and Technology, Shandong University, Qingdao, China

§Huawei Cloud Computing Technologies Co., Ltd, China

{fangliu, liuyang26, shilin, huanghoukun, ruifengwang}@buaa.edu.cn, zhenyang@sdu.edu.cn, lily@buaa.edu.cn

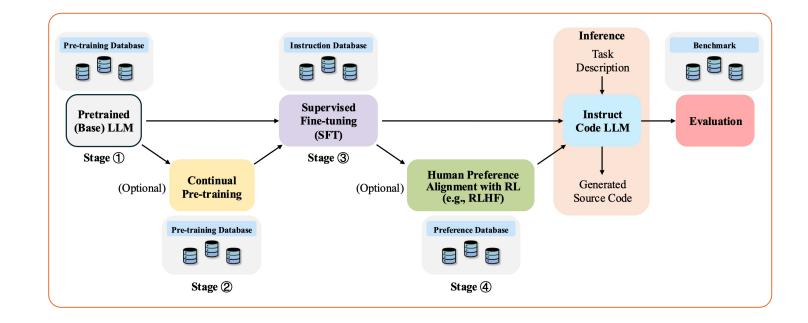
{lizhongqi7, mayuchi1}@huawei.com

Hallucination



Today's Agenda

- Pre-training stage
 - Model architecture
 - Pre-training dataset
 - Learning objectives
 - Evaluation dataset
- Special topics
 - Post-training staging
 - Scaling law
 - Hallucination



How to obtain a "good enough" LLM

Dataset Pre-training dataset / Fine-tuning dataset Instruction tuning dataset Alignment dataset Human / Logical feedback dataset **Evaluation dataset Learning Procedure** Optimization objectives Learning algorithm (SFT, RL, etc.) Continual learning, Curriculum learning Staged learning

Model Architecture

- Encoder-decoder models
- Decoder-only models
- Hyper-parameter tuning

- ..

Logistics – Week 7

- Assignment 3
 - https://github.com/machine-programming/assignment-3
 - Releasing tomorrow; due two weeks from now (Oct 23)
- Oral presentation sign up sheet
 - Sent out during the weekend
 - Oral presentation starting on Week 9
- Forming groups for your final projects!
 - Sign up form will be sent out on Thursday
 - Form a group of 2-3 before Next Thursday (Oct 16)