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Logistics – Week 8

• Assignment 3: Coding LLM Agents
• https://github.com/machine-programming/assignment-3
• Fully functional web-app agent. Due: Oct 23 (Thu)

• Oral presentation sign up sheet
• Please sign up! (16/19 received)

• Forming groups for your final projects!
• Form a group of 2-3 before This Sunday (Oct 19)
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How to obtain a “good enough” LLM
Dataset

Learning Procedure

Model Architecture

- Pre-training dataset / Fine-tuning dataset
- Instruction tuning dataset
- Alignment dataset
- Human / Logical feedback dataset
- Evaluation dataset
- …

- Optimization objectives
- Learning algorithm (SFT, RL, etc.)
- Continual learning, Curriculum learning
- Staged learning
- …

- Encoder-decoder models
- Decoder-only models
- Hyper-parameter tuning
- …



How to obtain a “good enough” LLM



Post-Training: Supervised Fine-tuning (SFT)
Dataset

Learning Procedure

Model Architecture

- Instruction tuning dataset
- Coding dataset
- Tool-use dataset
- Data-mixing and Curriculum for SFT
- …

- (FIXED) Next token prediction objective
- Full-parameter optimization
- Parameter-efficient fine-tuning (PEFT)
- Component freezing
- Hyper-parameter

- (FIXED) Language Model
- Adaptation layers (during PEFT)



Post-Training: Reinforcement Learning (RL)
Dataset

Learning Procedure

Model Architecture

- Human preference reward
- Tool use reward
- Compiler, runtime, testing feedback
- …

- PPO, GRPO, DPO
- Reward provider: model, tool, logical spec
- Gradient-based RL?
- …

- (FIXED) Language Model



Post-Training: Reinforcement Learning (RL)
Dataset

Learning Procedure

Model Architecture

- Human preference reward
- Tool use reward
- Compiler, runtime, testing feedback
- …

- PPO, GRPO, DPO
- Reward provider: model, tool, 

logical spec
- Gradient-based RL?
- …- (FIXED) Language Model

Dataset

- Instruction tuning dataset
- Coding dataset
- Tool-use dataset
- Data-mixing and Curriculum for SFT
- …

Learning Procedure

- (FIXED) Next token prediction objective
- Full-parameter optimization
- Parameter-eTicient fine-tuning (PEFT)
- Component freezing
- Hyper-parameter



Today’s Agenda

• Supervised Fine-tuning
• Learning objective
• Dataset

• Reinforcement Learning
• Learning objective
• Optimization
• Dataset



SFT: Learning Objectives

• Pre-training: General understanding of language
• SFT: Aligns with human intent
• High-level Objective:
• Instruction following / dialog
• Reasoning and chain-of-thought
• Tool use and agentic protocol-following
• Code generation (completion + Infilling/FIM)

• Low-level Objective: Next-token prediction
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SFT: Learning Objectives

• Instruction following
• Utilizing special tokens such as <system>, <user>, and <assistant>
• Instruction: system prompts and user instructions
• From completion style to multi-step turns from <assistant> token

Write this function:
  def add(a, b):

def add(a, b): return a + b

You (user)

Language Model (<assistant>)

You are a senior software engineer from 
a top-tier company…

System



Traning language models to follow instructions with human feedback, Ouyang et. al., OpenAI, 2022
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Traning language models to follow instructions with human feedback, Ouyang et. al., OpenAI, 2022



Directly giving human instruction

Giving human instruction wrapped by a prompt

Directly giving human instruction, but model is SFT-ed

0.5

Win rate: human evaluation of which answer is more 
preferrable, target or SFT 175B;
The score for SFT 175B would be 0.5 by construction

Traning language models to follow instructions with human feedback, Ouyang et. al., OpenAI, 2022



SFT: Learning Objectives

• Reasoning and Chain-of-thought
• Learn from existing reasoning chain in a fully-supervised manner

• Intuition: Imitate “reasoning” from the dataset
• Problem: RL might be better fit
• Single-path bias, Teacher-forcing mismatch, outcome misalignment, …



Orca: Progressive Learning from Complex Explanation Traces of GPT-4, Mukherjee et. al., Microsoft Research, 2023
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The Llama 3 Herd of Models, Llama Team, AI@Meta, 2024
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SFT: Learning Objectives

• Tool use
• Understanding tokens such as <tool>
• Being able to understand tools when tools are given in the context
• Conform to protocol of tool call (e.g., Model Context Protocol, MCP)

• Intuition: Usefulness within agentic frameworks

{ ”tool": "filesystem.writeFile",
  ”args": {
    "path": ”src/parity.py",
    "content": "def parity(x):\nreturn x % 2 == 0"
  } 
}



The Llama 3 Herd of Models, Llama Team, AI@Meta, 2024
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SFT: Learning Objectives

• Code generation
• Being better at generating high-quality code
• Multi-lingual: generating code in different programming languages
• Explanation: writing code with comments and documentations

The Llama 3 Herd of Models, Llama Team, AI@Meta, 2024
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Today’s Agenda

• Supervised Fine-tuning
• Learning objective
• Dataset

• Reinforcement Learning
• Learning objective
• Optimization
• Dataset



SFT: Dataset & Data-mix

• Intuition:
• Pre-training gives LLM general understanding of language
• SFT during Post-training adds capabilities related to expected usage 

contexts: dialogue, coding, agentic tool use, reasoning, etc.
• Note: multiple capabilities à general-purpose language model

• Challenges:
• How do we obtain data for these purposes?
• How do we mix them into SFT dataset?
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• Reasoning
• Tool use / agentic behavior
• Coding

• …
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SFT: Dataset & Data-mix
• Instruction following
• Reasoning
• Tool use / agentic behavior
• Coding

• …

Expert written

Super-NaturalInstruction: Generalization via Declarative Instructions on 1600+ NLP Tasks, Wang et. al., 2022



SFT: Dataset & Data-mix
• Instruction following
• Reasoning
• Tool use / agentic behavior
• Coding

• …
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SFT: Dataset & Data-mix
• Instruction following
• Reasoning
• Tool use / agentic behavior
• Coding

• …

Self-supervision: generating reasoning chains by other language 
models, where results are post-hoc verified and filtered.

The Llama 3 Herd of Models, Llama Team, AI@Meta, 2024



SFT: Dataset & Data-mix
• Instruction following
• Reasoning
• Tool use / agentic behavior
• Coding

• …

Synthetic dataset: 
- Problem: given the instruction, generate a tool call
- “Inverse problem”: given a tool specification, generate sample 

instructions that require the given tool call

The Llama 3 Herd of Models, Llama Team, AI@Meta, 2024
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SFT: Dataset & Data-mix

• Intuition:
• Pre-training gives LLM general understanding of language
• SFT during Post-training adds capabilities related to expected usage 

contexts: dialogue, coding, agentic tool use, reasoning, etc.

• Challenges:
• How do we obtain data for these purposes?
• How do we mix them into SFT dataset?



The Llama 3 Herd of Models, Llama Team, AI@Meta, 2024
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Keeping multilingual capability present

Optimize for modern features such as 
reasoning and tool use

Keeping the capability of a general 
language model, avoiding forgetting



Today’s Agenda

• Supervised Fine-tuning
• Learning objective
• Dataset

• Reinforcement Learning
• Learning objective
• Optimization
• Dataset
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RL: Learning Objectives

• Quick review of reinforcement learning
• Core concepts: learn a policy that can maximize return
• Environment (𝑃 𝑠'(#	 𝑠', 𝑎'))
• State / observation (𝑠')
• Action (𝑎')
• Reward (𝑟'; return 𝑅)
• Policy (𝜋)



• Environment (𝑃 𝑠'(#	 𝑠', 𝑎'))
• State / observation (𝑠')
• Action (𝑎')
• Reward (𝑟'; return 𝑅)
• Policy (𝜋)

RL: Review
Mountain Car

State: ((𝑝! , 𝑝"), (𝑣! , 𝑣"))

Action: 𝑎 ∈ {−1,0, +1}
Reward: −1 per time step until goal; 0 at the goal

Policy: 𝜋, throttle until speed=0, then reverse direction



• Environment (𝑃 𝑠'(#	 𝑠', 𝑎'))
• State / observation (𝑠')
• Action (𝑎')
• Reward (𝑟'; return 𝑅)
• Policy (𝜋)

RL: Review
Pong

State: Image 𝑟, 𝑔, 𝑏 #$×#$

Action: 𝑎 ∈ {up, down, no– op}
Reward: −1 per lost, +1 per win

Policy: 𝜋, detect position of the ball; always stay synchronized



• Environment (𝑃 𝑠'(#	 𝑠', 𝑎'))
• State / observation (𝑠')
• Action (𝑎')
• Reward (𝑟'; return 𝑅)
• Policy (𝜋%; 𝜃 is parameters)

RL: Learning Objective
Language Modeling

State: input token sequence 𝐱 = [explain, why, the, …] and the 
current output sequence 𝑦 = [The, sky, appears, …]

Action: 𝑎 ∈ Σ, a single token

Reward: 𝑟&(𝐱, 𝐲) a reward model for helpfulness/correctness/…

Policy: 𝜋', the language model parametrized by 𝜃

Q: “Explain why the sky is blue.”

A: “The sky appears blue because of Rayleigh scattering — the 
way sunlight interacts with Earth’s atmosphere. Here’s the 

process step by step: Sunlight is made of many colors
White sunlight actually contains all colors of light…”



RL: Learning Objective

• Intuition:
• In open settings, you only know whether the answer is “good/bad” after 

you have generated the entire sentence or have interacted with the user 
with multiple turns
• “goodness” of an answer can be evaluated with many metrics: 

helpfulness, alignment with human values, reasoning clarity, correctness 
of the answer, syntax and semantic of a program

Environment (𝑃 𝑠()*	 𝑠( , 𝑎())
State / observation (𝑠()
Action (𝑎()
Reward (𝑟(; return 𝑅)
Policy (𝜋)



Training language models to follow instructions with human feedback, Ouyang et. al., OpenAI, 2022
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RL: Reward Modeling

• Before:
• Rewards for LLMs are generated by the environment
• Usually hardcoded (e.g., mountain car, cartpole, pong)

• Now:
• Rewards for LLMs are provided by reward models (RM)
• à Reward models need to be separately trained with human preference
• à Human preference needs to come from separate datasets

Environment (𝑃 𝑠()*	 𝑠( , 𝑎())
State / observation (𝑠()
Action (𝑎()
Reward (𝑟(; return 𝑅)
Policy (𝜋)



RL: Reward Modeling

• Training a reward model

Training language models to follow instructions with human feedback, Ouyang et. al., OpenAI, 2022

GPT-3 à InstructGPT à GPT-3.5/ChatGPT



RL: Learning Objective

• Summary
• Use Reinforcement Learning (RL) to fine-tune LLMs to maximize return
• à returns are meant to represent human preference
• à mechanically, returns/rewards are generated by reward models
• à reward models are trained from human preference datasets

Environment (𝑃 𝑠()*	 𝑠( , 𝑎())
State / observation (𝑠()
Action (𝑎()
Reward (𝑟(; return 𝑅)
Policy (𝜋)
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RL: Optimization

• DQN (Deep Q-Network)
• Directly model Q-value: the value function of an action 𝑄%(𝑠, 𝑎)

• Policy Gradient (REINFORCE)
• Directly optimize the policy 𝜋%(𝑎|𝑠)

• Actor-Critic Model (AC)
• Adding a critic 𝑉K(𝑠) and “advantage estimate” 𝐴 𝑠, 𝑎 = 𝑅 − 𝑉K(𝑠)

• Proximal Policy Optimization (PPO)
• To stabilize, we clip the loss based on how far the policy deviates

• Group Relative Policy Optimization (GRPO)
• (Specifically for LLM) grouped normalized advantage 𝐴! = (𝑟! − 𝑟̅)/𝜎L

∇'𝐽 𝜃 = 𝔼+![∇' log 𝜋' 𝑎 𝑠 𝑅]

∇'𝐽 𝜃 = 𝔼+![∇' log 𝜋' 𝑎 𝑠 𝐴(𝑠, 𝑎)]

∇'𝐽 𝜃 = 𝔼+![∇' log 𝜋' 𝑦 𝑥 (𝑟& 𝑥, 𝑦 − 𝛽(log 𝜋' 𝑦 𝑥 − log 𝜋,-. 𝑦 𝑥 + 1))]



RL: Optimization

• (DQN)
• Directly model Q-value: the value function of an action 𝑄%(𝑠, 𝑎)

• (REINFORCE)
• Directly optimize the policy 𝜋%(𝑎|𝑠)

• (AC)
• Adding a critic 𝑉K(𝑠) and “advantage estimate” 𝐴 𝑠, 𝑎 = 𝑅 − 𝑉K(𝑠)

• (PPO)
• To stabilize, we clip the loss based on how far the policy deviates

• (GRPO)
• (Specifically for LLM) grouped normalized advantage =𝐴! = (𝑟! − 𝑟̅)/𝜎L

∇'𝐽 𝜃 = 𝔼+![∇' log 𝜋' 𝑎 𝑠 𝑅]
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Training language models to follow instructions with human feedback, Ouyang et. al., OpenAI, 2022











Reward coming from compilers for coding



No reward model for DeepSeek-R1-Zero





SFT (cold-start) → RL (reasoning-oriented) → SFT (rejection-sampling) → RL (all-scenario)
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• Supervised Fine-tuning
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• Reinforcement Learning
• Learning objective
• Optimization
• Dataset



RL: Human Preferences

HH-RLHF, Anthropic, Red Teaming Dataset SHP, Stanford Human Preference Dataset

Stack Exchange Preferences
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Logistics – Week 8

• Assignment 3: Coding LLM Agents
• https://github.com/machine-programming/assignment-3 
• Fully functional web-app agent. Due: Oct 23 (Thu)

• Oral presentation sign up sheet
• Please sign up! (16/19 received)

• Forming groups for your final projects!
• Form a group of 2-3 before This Sunday (Oct 19)
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