Machine Programming

Lecture 14 — Post-training of Coding Language Models: SFT & RL
Ziyang Li

Logistics — Week 8

* Assignment 3: Coding LLM Agents
* https://github.com/machine-programming/assignment-3
* Fully functional web-app agent. Due: Oct 23 (Thu)

* Oral presentation sign up sheet
* Please sign up! (16/19 received)

* Forming groups for your final projects!
* Form a group of 2-3 before This Sunday (Oct 19)

https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3

How to obtain a “good enough” LLM

4o Dataset

/\ Learning Procedure
Model Architecture

How to obtain a “good enough” LLM

Dataset

4 - Pre-training dataset/ Fine-tuning dataset
- Instruction tuning dataset

- Alignment dataset
- Human/ Logical feedback dataset

- Evaluation dataset

\

Learning Procedure

Model Architecture - Optimization objectives
- Learning algorithm (SFT, RL, etc.)

- Continual learning, Curriculum learning
- Staged learning

- Encoder-decoder models
- Decoder-only models
- Hyper-parameter tuning

How to obtain a “good enough” LLM

Inference
Pre-training Database Instruction Database Benchmark

Task
g g g g % g Desciiption g @ g

. Supervised
Pretrained - . . N Instruct :
(Base) LLM > Flr}(;;ujr;mg > CodeLLM —— Evaluation
Stage D \ / Stage @ \ / 1
. Human Preference
(Optional) PCOItlt“}u,a ! (Optional) Alignment with RL Generated
oL DY (e.g., RLHF) Source Code
Pre-training Database Preference Database

=8g ===

Stage @ Stage @

Post-Training: Supervised Fine-tuning (SFT)

Model Architecture

(FIXED) Language Model
Adaptation layers (during PEFT)

Dataset

- Instruction tuning dataset

- Coding dataset

- Tool-use dataset

- Data-mixing and Curriculum for SFT

s
Learning Procedure

(FIXED) Next token prediction objective
Full-parameter optimization
Parameter-efficient fine-tuning (PEFT)
Component freezing

Hyper-parameter

Post-Training: Reinforcement Learning (RL)

Dataset

4 - Human preference reward
- Tool use reward
- Compiler, runtime, testing feedback

\

Learning Procedure

Model Architecture - PPO, GRPO, DPO
- (FIXED) Language Model Reward provider: model, tool, logical spec

Gradient-based RL?

Post-Training: Reinforcement Learning (RL)

Dataset

>

Instruction tuning dataset A
Coding dataset

Tool-use dataset

Data-mixing and Curriculum for SFT

Dataset

Human preference reward
Tool use reward
Compiler, runtime, testing feedback

s
Learning Procedure

- (FIXED) Next token prediction objective
- Full-parameter optimization

- Parameter-efficient fine-tuning (PEFT)

- Component freezing

- Hyper-parameter

s
Learning Procedure

- PPO, GRPO, DPO
- Reward provider: model, tool,

logical spec
- Gradient-based RL?

Today’s Agenda

* Supervised Fine-tuning
* Learning objective
* Dataset

* Reinforcement Learning
* Learning objective
* Optimization
* Dataset

Ve

Pre-training Database

z28g

Pretrained
(Base) LLM
stage® O\

. Continual
(Opéionsl) Pre-training

Pre-training Database

=2€g

Stage @

Fine-tuning

Stage @ \

Instruction Database

=28g

(Optional)

Human Preference
Alignment with RL
(e.g, RLHF)

Preference Database

Stage @

A

Inference
Task

Descxl'iption g % g

Benchmark

Instruct q
Code LLM — Evaluation

|

Generated
Source Code

SFT: Learning Objectives

* Pre-training: General understanding of language
* SFT: Aligns with human intent .
+ High-level Objective: L(x;6) = Zi:l_ log Pg (x; | X<i)

* Instruction following / dialog

* Reasoning and chain-of-thought

* lool use and agentic protocol-following

* Code generation (completion + Infilling/FIM)

* Low-level Objective: Next-token prediction

SFT: Learning Objectives

* Instruction following

* Utilizing special tokens such as <system>, <user>, and <assistant>
* [nstruction: system prompts and user instructions
* From completion style to multi-step turns from <assistant> token

System

—

i You are a senior software engineer from
a top-tier company...

<

You (user)

Write this function:
def add(a, b):

f

Language Model (<assistant>)

idef add(a, b): return a + b]

Training language models to follow instructions
with human feedback

Long Ouyang*® Jeff Wu* Xu Jiang® Diogo Almeida* Carroll L. Wainwright*

Pamela Mishkin® Chong Zhang Sandhini Agarwal Katarina Slama Alex Ray

John Schulman Jacob Hilton Fraser Kelton Luke Miller Maddie Simens

Amanda Askell’ Peter Welinder Paul Christiano*'

Jan Leike” Ryan Lowe”

OpenAl

Traning language models to follow instructions with human feedback, Ouyang et. al., OpenAl, 2022

4

mandala ¢n Fallassr 2 1ntinnma

Training languag
with

Long Ouyang* Jeff Wu* Xy

Pamela Mishkin® Chong Zhan
John Schulman Jacob Hilton
Amanda Askell’
Jan Leike*

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis

sampled from our .
Explain the moon
prompt dataset. landing to a 6 year old

\j
A labeler
demonstrates the @
desired output
: Va
behawor. Some people went
to the moon...
\J
This data is used SFT
to fine-tune GPT-3 050,
= s Q/).s&\Q
with supervised W
learning. 2

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

Explain the moon
landing to a 6 year old

o o

Explain gravity. Explain war,

o o

Moon is natural People went to
satellite of the moon.

L& J

Q

0-0-0-0

Traning language models to follow instructions with human feedback, Ouyang et. al., OpenAl, 2022

Pame

John

oinine lanosaocn smandala $a Pallassr tnctseszntiana
Step 1 Step 2 Step 3
Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using
A promptis
' | Zf
Sampled:from our Explain the |
prompt dataset. landingtoa 6
v
A labeler
demonstrates the @
desired output % O . 6 - .
behavior. e / MOdel
to the moo)
his d d \ — | A
This data is use! SFT
to fine-tune GPT-3 25 P PO ptx
with supervised '\}s'a{
learning. 2 | P PO
BEE

Win rate against SFT 175B

=0 SFT
GPT (prompted)
-0 GPT

Ll 1L 1

1758
Model size

Traning language models to follow instructions with human feedback, Ouyang et. al., OpenAl, 2022

Pame

John

aininag lanomaon smandalc $a fallassr 2nct

.
2ot o

Step 1

Collect demonstration data,
and train a supervised policy.

Step 2

Collect comparison data,
and train a reward model.

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A promptis A prompt and
sampled from our Expla‘mm several model = mm
prompt dataset. landing to a 6 year old outputs are landing to a 6 year old
amnled
Alabeler
demonst
desired o
behavior, %
10 0.6-
This data - O 5 MOdeI
to fine-tu - .
with sup Lo P—- == PPO-th
learning. CD e e
..g ‘ L R T PPO
m 04 —T ~o— SFT
& -
o GPT (prompted
©
= GPT
;=
< 0.2 4
1.3B 6B 175B
Model size

4 Directly giving human instruction, but model is SFT-ed

|
)
i Giving human instruction wrapped by a prompt]
|

T Directly giving human instruction

Win rate: human evaluation of which answer is more

preferrable, target or SFT 175B;

The score for SFT 175B would be 0.5 by construction

Traning language models to follow instructions with human feedback, Ouyang et. al., OpenAl, 2022

SFT: Learning Objectives

* Reasoning and Chain-of-thought
* Learn from existing reasoning chain in a fully-supervised manner

* Intuition: Imitate “reasoning” from the dataset

* Problem: RL might be better fit
* Single-path bias, Teacher-forcing mismatch, outcome misalignment, ...

@ Orca: Progressive Learning from Complex
| Explanation Traces of GPT-4

Subhabrata Mukherjee*’, Arindam Mitra*
Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, Ahmed Awadallah

Microsoft Research

Orca: Progressive Learning from Complex Explanation Traces of GPT-4, Mukherjee et. al., Microsoft Research, 2023

@ Orca: Progressive Learning from Complex
Explanation Traces of GPT-4

Subhabrata Mukherjee*!, Arindam Mitra*

Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, Ahmed Awadallah

Model | Tuning Method | Data Size | Teacher
Alpaca Simple Instructions / Self-instruct 52K text-da-vinci-003
Vicuna User Instructions / Natural 70K ChatGPT
Dolly User Instructions / Natural 15K Human
WizardLM | Complex Instructions / Evol-instruct 250K ChatGPT
Orca Complex Instructions / Explanations 5M ChatGPT (5M)
N GPT-4 (1M)
Table 1: Overview of popular models instruction tuned with OpenAl large foundation models
(LFMs). Orca leverages complex instructions and explanations for progressive learning.

Orca: Progressive Learning from Complex Explanation Traces of GPT-4, Mukherjee et. al., Microsoft Research, 2023

@ Orca: Progressive Learning from Complex

T doancd2oan M e £ VD4
Model | Tuning Method | Data Size | Teacher
Alpaca | Simple Instructions / Self-instruct | 52K | text-da-vinci-003
Vicu
Dol
Ganes Wizar
Orc o Evaluation with GPT-4
(O]
| 2 120
Table 1: Ove © 100 103
(O]
(LFMs). Or = 100 92 93
ge 76
o ©
g5 % 68
(1]
E 60
L
9 40
20
LLaMA-13B Alpaca-13B Vicuna-13B Bard ChatGPT Orca-13B

Figure 1: Orca (13B params) outperforms a wide range of foundation models including Ope-
nAl ChatGPT as evaluated by GPT-4 in the Vicuna evaluation set. We further demonstrate
similar results against a wide range of evaluation sets from other works in experiments.

Orca: Progressive Learning from Complex Explanation Traces of GPT-4, Mukherjee et. al., Microsoft Research, 2023

00 Meta

The Llama 3 Herd of Models

Llama Team, Al @ Meta'
LA detailed contributor list can be found in the appendix of this paper.

Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a
new set of foundation models, called Llama 3. It is a herd of language models that natively support
multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with
405B parameters and a context window of up to 128K tokens. This paper presents an extensive
empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language
models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and
post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input
and output safety. The paper also presents the results of experiments in which we integrate image,
video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach
performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The
resulting models are not yet being broadly released as they are still under development.

Date: July 23, 2024
Website: https://llama.meta.com/

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

00 Meta

The Llama 3 Herd of Models

Llama Team, Al @ Meta'
1A detailed contributor list can be found in the appendix of this paper.

Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a
new set of foundation models, called Llama 3. It is a herd of language models that natively support
multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with
405B parameters and a context window of up to 128K tokens. This paper presents an extensive
empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language
models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and
post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input
and output safety. The paper also presents the results of experiments in which we integrate image,
video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach
performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The

resulting models are 1

Date: July 23, 2024
Website: https://llama

4.3 Capabilities

We highlight special efforts to improve performance for specific capabilities such as code (Section 4.3.1),
multilinguality (Section 4.3.2), math and reasoning (Section 4.3.3), long context (Section 4.3.4), tool use
(Section 4.3.5), factuality (Section 4.3.6), and steerability (Section 4.3.7).

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

00 Meta

43 Cap

We highlig
multilingu
(Section 4.

The Lla

Llama Team, Al
1A detailed co

Modern artifi

hiliti

4.3.3

new set of founaariontmoaes; cate
multilinguality, coding, reasoning,
405B parameters and a context w:
empirical evaluation of Llama 3. We
models such as GPT-4 on a plethor
post-trained versions of the 405B p4
and output safety. The paper also
video, and speech capabilities into I
performs competitively with the stg
resulting models are not yet being

Date: July 23, 2024
Website: https://llama.meta.com/

Math and Reasoning

We define reasoning as the ability to perform multi-step computations and arrive at the correct final answer.
Several challenges guide our approach to training models that excel in mathematical reasoning;:

Lack of prompts: As the complexity of questions increases, the number of valid prompts or questions
for Supervised Fine-Tuning (SFT) decreases. This scarcity makes it difficult to create diverse and
representative training datasets for teaching models various mathematical skills (Yu et al., 2023; Yue
et al., 2023; Luo et al., 2023; Mitra et al., 2024; Shao et al., 2024; Yue et al., 2024b).

Lack of ground truth chain of thought: Effective reasoning requires a step-by-step solution to facilitate
the reasoning process (Wei et al., 2022c). However, there is often a shortage of ground truth chains of
thought, which are essential for guiding the model how to break down the problem step-by-step and
reach the final answer (Zelikman et al., 2022).

Incorrect intermediate steps: When using model-generated chains of thought, the intermediate steps
may not always be correct (Cobbe et al., 2021; Uesato et al., 2022; Lightman et al., 2023; Wang et al.,
2023a). This inaccuracy can lead to incorrect final answers and needs to be addressed.

Teaching models to use external tools: Enhancing models to utilize external tools, such as code interpreters,
allows them to reason by interleaving code and text (Gao et al., 2023; Chen et al., 2022; Gou et al.,
2023). This capability can significantly improve their problem-solving abilities.

Discrepancy between training and inference: There is often a discrepancy between how the model is
finetuned during training and how it is used during inference. During inference, the finetuned model may
interact with humans or other models, requiring it to improve its reasoning using feedback. Ensuring
consistency between training and real-world usage is crucial for maintaining reasoning performance.

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

SFT: Learning Objectives

* Tool use
* Understanding tokens such as <tool>
* Being able to understand tools when tools are given in the context
 Conformto protocol of tool call (e.g., Model Context Protocol, MCP)

* Intuition: Usefulness within agentic frameworks

7
[{ "tool": "filesystem.writeFile",
I "args": {

I "path": "src/parity.py",

' "content": "def parity(x):\nreturn x % 2 == Q"

00 Meta

The Llama 3 Herd of Models

Llama Team, Al @ Meta'
LA detailed contributor list can be found in the appendix of this paper.

Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a
new set of foundation models, called Llama 3. It is a herd of language models that natively support
multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with
405B parameters and a context window of up to 128K tokens. This paper presents an extensive
empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language
models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and
post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input
and output safety. The paper also presents the results of experiments in which we integrate image,
video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach
performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The
resulting models are not yet being broadly released as they are still under development.

Date: July 23, 2024
Website: https://llama.meta.com/

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

QN Meta

The Llama 3 Herd of Models

Llama Team, Al @ Meta®
LA detailed contributor list can

) LRl Az £41.:

Modern artificial intelligence (A
new set of foundation models, ¢
multilinguality, coding, reasoni
405B parameters and a contex
empirical evaluation of Llama 3.
models such as GPT-4 on a plet
post-trained versions of the 405]
and output safety. The paper 2
video, and speech capabilities in
performs competitively with thq
resulting models are not yet bei

Date: July 23, 2024
Website: https://llama.meta.com/|

4.3.5 ToolUse

Teaching LLMs to use tools such as search engines or code interpreters hugely expands the range of tasks
they can solve, transforming them from pure chat models into more general assistants (Nakano et al., 2021;
Thoppilan et al., 2022; Parisi et al., 2022; Gao et al., 2023; Mialon et al., 2023a; Schick et al., 2024). We train
Llama 3 to interact with the following tools:

e Search engine. Llama 3 is trained to use Brave Search” to answer questions about recent events that go
beyond its knowledge cutoff or that require retrieving a particular piece of information from the web.

e Pythoninterpreter. Llama 3 can generate and execute code to perform complex computations, read files
uploaded by the user and solve tasks based on them such as question answering, summarization, data
analysis or visualization.

e Mathematical computational engine. Llama 3 can use the Wolfram Alpha API® to more accurately solve

math, science problems, or retrieve accurate information from Wolfram’s database.

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

QN Meta

4.3.5 Tool Use

The

Llama
15 4ol they can solve, tr

Thoppilan et al., 2
Llama 3 to intera

Mode:

W S e Search engin
multil :
e beyond its k
:’gﬂg e Pythoninter
post-t uploaded by
and o analysis or v
video,)

perfor| e Mathematica

result .
math, scienc

Date: July 23, 2024
Website: https://llama.meta.com/|

& User prompt

Teaching LLMs tonse tools suich as search engines ar cade internreters huoelv exnands the rance of tasks

Based on the inflation rate for the US in February 2024, and the cost of this list of tuples containing my daily groceries,
[(\"eggs\",3),(\"chicken\",4),(\"rice\",2),(\"beans\",2.50),(\"apples\",6.25)], can you give me the estimated total cost of
my groceries over a 30 day month when you add 1 cookie per day at Costco's food court giant cookie debut price and

adjust the total for the inflation percentage in $X.XX?

(J Assistant response

To answer your question, | will need to:

1. Look up the inflation rate for the US in February 2024

2. Look up the Costco food court giant cookie debut price

3. Calculate the estimated total cost of your groceries
over a 30 day month when you add 1 cookie per day at
Costco's food court giant cookie debut price and adjust
the total for the inflation percentage

First, | will look up the inflation rate for the US in
February 2024.

X Assistant tool call

brave_search.call(query="US inflation rate
February 2024")

[Tool output

{

"title": "US Inflation Remained
Higher Than Economists Had Expected in
February",

"url": "https://
www.investopedia.com/february-2024-
cpi-8607820",

"description": "Consumer prices rose
3.2% over the year 1in
February, higher than the 3.1% annual rate
in January and above what economists had
predicted. An uptick in gas prices and
housing prices was behind the unexpectedly
high inflation rate.",

The inflation rate for the US in February 2024 was
3.2%.Next, | will look up the Costco food court giant
cookie debut price.

% Assistant tool call

brave_search.call(query="Costco food court
giant cookie debut price")

[Tool output

{

"title": "Costco’s food court
replaced its churro with a giant cookie.
Here’s how it tastes",

"url": "https://www.today.com/food/
groceries/costco-double-chocolate-chunk-
cookie-food-court-review-rcnal35537",

"description": "Costco</
strong>'s Kirkland Signature Double
Chocolate Chunk Cookie,
the latest addition to its food</
strong> court, costs
$2.49 and has 750 calories. Here's my
review of the buttery treat.",
¥

The Costco food court giant cookie debut price is

$2.49.Now, | will calculate the estimated total cost of your
groceries over a 30 day month when you add 1 cookie per

day at Costco's food court giant cookie debut price and
adjust the total for the inflation percentage.

) System Prompt

Environment: ipython,

Tools: brave_search, wolfram_alpha
Cutting Knowledge Date: : December 2023
Today’s Date: Jul 11, 2024

&% Assistant tool call

Define the list of tuples containing the
daily groceries

groceries = [("eggs",3),("chicken",4),
("rice",2),("beans",2.50), ("apples",6.25)]

Calculate the total cost of the
groceries per day

total_cost_per_day = sum([item[1] for item
in groceries])

Calculate the total cost of the
groceries per day including the cookie
total_cost_per_day_with_cookie =
total_cost_per_day + 2.49

Calculate the total cost of the
groceries for 30 days including the cookie
total_cost_for_30_days_with_cookie =
total_cost_per_day_with_cookie * 30

Define the inflation rate
inflation_rate = 0.032

Calculate the total cost of the
groceries for 30 days including the cookie
and adjusted for inflation
total_cost_for_30_days_with_cookie_and_inf
lation =
total_cost_for_30_days_with_cookie * (1 +
inflation_rate)

Print the result

print(f"The estimated total cost of your
groceries over a 30 day month when you add
1 cookie per day at Costco's food court
giant cookie debut price and adjust the
total for the inflation percentage is
${total_cost_for_30_days_with_cookie_and_i
nflation:.2f}")

[Tool output

The estimated total cost of your groceries
over a 30 day month when you add 1 cookie
per day at Costco's food court giant
cookie debut price and adjust the total
for the inflation percentage is $626.63

The estimated total cost of your groceries over a 30 day
month when you add 1 cookie per day at Costco's food
court giant cookie debut price and adjust the total for the
inflation percentage is $626.63.

The Llama 3 Herd of Models,

Llama Team, Al@Meta, 2024

SFT: Learning Objectives

* Code generation
* Being better at generating high-quality code
* Multi-lingual: generating code in different programming languages
* Explanation: writing code with comments and documentations

def

for

gushti cdi():
n = int (input())
arr = list (map(int, input().split()))
points = 0
for i in range(n):
if arr[i] == 0 and i != 0:

idx = arr.index (max(arr[:1]))
points += arr[idx]
arr[idx] = 0

return points

in range (int (input())):

print (gushti cdi())

<?php

function gushti cdi() {
$n =
Sarr = explode ("
$points = 0;

for ($i = 0; $i < $n; S$i++) {
== 0 && S$i
$maxVal = max(array slice(Sarr, 0, $i));
$idx = array search($maxVal, $arr);

if (Sarr[$i]

Spoints +=
Sarr[$idx]
}
}
return $points;

}

$t = (int) fgets (STDIN) ;
for ($i = 0; $i < $t; $
echo gushti cdi()

}
?>

(int) fgets (STDIN) ;
", fgets(STDIN));

. "\n";

1= 0) {

Sarr[$idx];
= 0;

i++) |

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

00 Meta

The Llama 3 Herd of Models

Llama Team, Al @ Meta'
LA detailed contributor list can be found in the appendix of this paper.

Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a
new set of foundation models, called Llama 3. It is a herd of language models that natively support
multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with
405B parameters and a context window of up to 128K tokens. This paper presents an extensive
empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language
models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and
post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input
and output safety. The paper also presents the results of experiments in which we integrate image,
video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach
performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The
resulting models are not yet being broadly released as they are still under development.

Date: July 23, 2024
Website: https://llama.meta.com/

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

QO Meta

The Llama 3 Herd of Models

Llama Team, Al @ Meta'

1A detailed contributor list can be found in the appendix of this paper.

Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a
new set of foundation models, called Llama 3. It is a herd of language models that natively support
multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with
405B parameters and a context window of up to 128K tokens. This paper presents an extensive
empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language
models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and

post-trained versions of
and output safety. The
video, and speech capa
performs competitively
resulting models are no

Date: July 23, 2024
Website: https://llama.m;

tha ADSR narameter languace madel and anr Tlama (Guard 2 madel for innut

4.3.1 Code

LLMs for code have received significant attention since the release of Copilot and Codex (Chen et al., 2021).
Developers are now widely using these models to generate code snippets, debug, automate tasks, and improve
code quality. For Llama 3, we target improving and evaluating code generation, documentation, debugging,
and review capabilities for the following high priority programming languages: Python, Java, Javascript,
C/C++, Typescript, Rust, PHP, HTML/CSS, SQL, bash/shell. Here, we present our work on improving
these coding capabilities via training a code expert, generating synthetic data for SFT, improving formatting
with system prompt steering, and creating quality filters to remove bad samples from our training data.

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

QO Meta

Thel o

4.3.1 Code
Llama Te
1A detaill LLMs for code have received significant attention since the release of Copilot and Codex (Chen et al., 2021).

Developers are now widely using these models to generate code snippets, debug, automate tasks, and improve
Modern ¢ code quality. For L

new set ¢ and review capabil Expert training. We train a code expert which we use to collect high quality human annotations for code

1050 pay C/C+ Typescrip throughout subsequent rounds of post-training. This is accomplished by branching the main pre-training run
empirical] these coding capabi g q b g b y g p g

models si_with system promp| and continuing pre-training on a 1T token mix of mostly (>85%) code data. Continued pre-training on domain-

post-trair:

ond ontpon safory, The mper ey Specific data has been shown to be effective for improving performance in a specific domain (Gururangan
e e o €t al., 2020). We follow a recipe similar to that of CodeLlama (Roziére et al., 2023). For the last several
resulting models are not yet being b - thousand steps of training we perform long-context finetuning (LCFT) to extend the expert’s context length
P to 16K tokens on a high quality mix of repo-level code data. Finally, we follow the similar post-training
Wobsite: tpe://llama meta.com/ modeling recipes described in Section 4.1 to align this model, except with SFT and DPO data mixes primarily

targeting code. This model is also used for rejection sampling (Section 4.2.2) for coding prompts.

Synthetic data generation. During development, we identified key issues in code generation, including difficulty
in following instructions, code syntax errors, incorrect code generation, and difficulty in fixing bugs. While
intensive human annotation could theoretically resolve these issues, synthetic data generation offers a
complementary approach at a lower cost and higher scale, unconstrained by the expertise level of annotators.
As such, we use Llama 3 and the code expert to generate a large quantity of synthetic SFT dialogs.

We describe three high-level approaches for generating synthetic code data. In total, we generate over 2.7M
synthetic examples which were used during SFT.

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

Today’s Agenda

* Supervised Fine-tuning
- : bieoti
* Dataset

* Reinforcement Learning
* Learning objective
* Optimization
* Dataset

Ve

Pre-training Database

z28g

Pretrained
(Base) LLM
stage® O\

. Continual
(Opéionsl) Pre-training

Pre-training Database

=2€g

Stage @

Fine-tuning

Stage @ \

Instruction Database

=28g

(Optional)

Human Preference
Alignment with RL
(e.g, RLHF)

Preference Database

Stage @

A

Inference
Task

Descxl'iption g @ @

Benchmark

Instruct q
Code LLM — Evaluation

l

Generated
Source Code

SFT:

* Intuition:
* Pre-training gives LLM general understanding of language

 SFT during Post-training adds capabilities related to expected usage
contexts: , , , , etc.

* Note: multiple capabilities =2 general-purpose language model

* Challenges:
* How do we obtain data for these purposes?
* How do we mixthem into SFT dataset?

SFT: Dataset & Data-mix

———

* Instruction following
* Reasoning
* Tool use / agentic behavior

* Coding

S o o e e e e e e e e e e e e mmm M e e mmm M e e mmm M e e M M e e mmm M e e M e e e G e e G G e e e e e e e

— . . D S M R RN M S R R S M M S S S R e e e S S e e e e o P

SFT: Dataset & Data-mix

[- Instruction following]

* Reasoning

* Tool use/ agentic behavior

SUPER-NATURALINSTRUCTIONS:
Generalization via Declarative Instructions on 1600+ NLP Tasks

 Coding
®Yizhong Wang? ©Swaroop Mishra® *Pegah Alipoormolabashi* *Yeganeh Kordi®
Amirreza Mirzaei* Anjana Arunkumar® Arjun Ashok® Arut Selvan Dhanasekaran?
Atharva Naik” David Stap® Eshaan Pathak® Giannis Karamanolakis'® Haizhi Gary Lai'!
Ishan Purohit'? Ishani Mondal'® Jacob Anderson® Kirby Kuznia® Krima Doshi® Maitreya Patel?
Kuntal Kumar Pal®> Mehrad Moradshahi'* Mihir Parmar? Mirali Purohit!® Neeraj Varshney?>
Phani Rohitha Kaza® Pulkit Verma3® Ravsehaj Singh Puri®> Rushang Karia® Shailaja Keyur Sampat3
Savan Doshi® Siddhartha Mishra'® Sujan Reddy'” Sumanta Patro'® Tanay Dixit!° Xudong Shen?°
Chitta Baral® Yejin Choi’? Noah A. Smith!'> Hannaneh Hajishirzi’:> Daniel Khashabi?!

! Allen Institute for Al 2Univ. of Washington 2 Arizona State Univ. *Sharif Univ. of Tech. ®Tehran Polytechnic °PSG College of Tech. "IIT Kharagpur
8Univ. of Amsterdam °UC Berkeley 10Columbia Univ. *Factored AI 12Govt. Polytechnic Rajkot 13Microsoft Research 14Stanford Univ. 15Zycus Infotech
16Univ. of Massachusetts Amherst 1 ”National Inst. of Tech. Karnataka *8TCS Research *°IIT Madras 2°National Univ. of Singapore 2*Johns Hopkins Univ.

— o e e e e e e e e R e e R M e e mmm M e e M S e e R e e e ey,

Super-Naturallnstruction: Generalization via Declarative Instructions on 1600+ NLP Tasks, Wang et. al., 2022

SFT: Dataset & Data-mix

SUPER-NATURALINSTRUCTIONS: |

[- Instruction following]

Expert written

Task Instruction
_| Definition

Is “... Given an utterance and recent dialogue context containing past 3
Ph utterances (wherever available), output ‘Yes’ if the utterance
Sa contains the small-talk strategy, otherwise output ‘No’. Small-talk is
. a cooperative negotiation strategy. It is used for discussing topics
i apart from the negotiation, to build a rapport with the opponent.”

* Reasoning

* Tool use / agentic behavior

* Coding

,(;[Positive Examples |

I
4 N

* Input: “Context: ... ‘That's fantastic, I'm glad we came to
something we both agree with.” Utterance: ‘Me too. I hope you
have a wonderful camping trip.””

* OQutput: “Yes”

* Explanation: “The participant engages in small talk when wishing

L their opponent to have a wonderful trip.”

,,/_—_[Negative Examples]

* Input: “Context: ... ‘Sounds good, I need food the most, what is
your most needed item?!’ Utterance: ‘My item is food too’.”

* Qutput: “Yes”

* Explanation: “The utterance only takes the negotiation forward

and there is no side talk. Hence, the correct answer is ‘No’.”

— o e e e e e e e e R e e R M e e mmm M e e M S e e R e e e ey,
— o O R R RS M R R S R R R S R S S S M R R R R e e e e e e e o

Super-Naturallnstruction: Generalization via Declarative Instructions on 1600+ NLP Tasks, Wang et. al., 2022

SFT: Dataset & Data-mix

* Instruction following

* Reasoning ooMeta

The Llama 3 Herd of Models

Llama Team, Al @ Meta!
LA detailed contributor list can be found in the appendix of this paper.

* Tool use / agentic behavior
* Coding

Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a
new set of foundation models, called Llama 3. It is a herd of language models that natively support
multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with
405B parameters and a context window of up to 128K tokens. This paper presents an extensive
empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language
models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and
post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input
and output safety. The paper also presents the results of experiments in which we integrate image,
video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach
performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The
resulting models are not yet being broadly released as they are still under development.

Date: July 23, 2024
Website: https://llama.meta.com/

— o e e e e e e e e R e e R M e e mmm M e e M S e e R e e e ey,
— . . D S M R RN M S R R S M M S S S R e e e S S e e e e o P

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

SFT: Dataset & Data-mix

* |nstruction following

QO Meta

T+ To address these challenges, we apply the following methodologies:

Lian e Addressing the lack of prompts: We source relevant pre-training data from mathematical contexts and

[- Reasoning]

1A
converted it into a question-answer format which can then be used for supervised finetuning. Additionally,

Mo we identify mathematical skills where the model under-performs and actively sourced prompts from

new;

* Tool use/ agentic behavior

s humans to teach models such skills. To facilitate this process, we create a taxonomy of mathematical
° COd | N g o) skills (Didolkar et al., 2024) and ask humans to provide relevant prompts/questions accordingly.
pos!
omd e Augmenting training data with step-wise reasoning traces: We use Llama 3 to generate step-by-step
° i solutions for a set of prompts. For each prompt, the model produces a variable number of generations.
oo These generations are then filtered based on the correct answer (Li et al., 2024a). We also do self-
Detd verification where Llama 3 is used to verify whether a particular step-by-step solution is valid for a given

question. This process improves the quality of the finetuning data by eliminating instances where the
model does not produce valid reasoning traces.

e Filteringincorrect reasoning traces: We train outcome and stepwise reward models (Lightman et al., 2023;
Wang et al., 2023a) to filter training data where the intermediate reasoning steps were incorrect. These
reward models are used to eliminate data with invalid step-by-step reasoning, ensuring high-quality
data for finetuning. For more challenging prompts, we use Monte Carlo Tree Search (MCTS) with
learned step-wise reward models to generate valid reasoning traces, further enhancing the collection of
high-quality reasoning data (Xie et al., 2024).

e Interleaving code and text reasoning: We prompt Llama 3 to solve reasoning problems through a
combination of textual reasoning and associated Python code (Gou et al., 2023). Code execution is used
as a feedback signal to eliminate cases where the reasoning chain was not valid, ensuring the correctness
of the reasoning process.

— o e e e e e e e e R e e R M e e mmm M e e M S e e R e e e ey,
— o O R R RS M R R S R R R S R S S S M R R R R e e e e e e e o

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

SFT: Dataset & Data-mix

7 ~
I \
H H | |
* |nstruction following , ,
QO Meta
. : To address these challenges, we apply the following methodologies: :
L R e a S O n | n g I T e Addressing the lack of prompts: We source relevant pre-training data from mathematical contexts and |
I :-1': converted it into a question-answer format which can then be used for supervised finetuning. Additionally,
. . | we identify mathematical skills where the model under-performs and actively sourced prompts from :
[} b i humans to teach models such skills. To facilitate this process, we create a taxonomy of mathematical
TO O l' u S e / a ge nt I C e h aVI O r | o skills (Didolkar et al., 2024) and ask humans to provide relevant prompts/questions accordingly. |
mu,
. 1 405 e Augmenting training data with step-wise reasoning traces: We use Llama 3 to generate step-by-step I
) C O d I n g I - solutions for a set of prompts. For each prompt, the model produces a variable number of generations. 1
| pos These generations are then filtered based on the correct answer (Li et al., 2024a). We also do self- I
| a_“d verification where Llama 3 is used to verify whether a particular step-by-step solution is valid for a given |
VI
I e question. This process improves the quality of the finetuning data by eliminating instances where the I
L4 cee res| model does not produce valid reasoning traces.
| |
| oad e Filteringincorrect reasoning traces: We train outcome and stepwise reward models (Lightman et al., 2023; |
I Wel Wang et al., 2023a) to filter training data where the intermediate reasoning steps were incorrect. These |
I reward models are used to eliminate data with invalid step-by-step reasoning, ensuring high-quality I
data for finetuning. For more challenging prompts, we use Monte Carlo Tree Search (MCTS) with
I learned step-wise reward models to generate valid reasoning traces, further enhancing the collection of |
1 high-quality reasoning data (Xie et al., 2024). 1
I e Interleaving code and text reasoning: We prompt Llama 3 to solve reasoning problems through a I
| combination of textual reasoning and associated Python code (Gou et al., 2023). Code execution is used I
| as a feedback signal to eliminate cases where the reasoning chain was not valid, ensuring the correctness |
| of the reasoning process. |
| |
: Self-supervision: generating reasoning chains by other language :
: models, where results are post-hoc verified and filtered. :
| |
| |
| |
| |
| |
\ /
e e e o O O O . . R R S S R R M S R M S S R M S SR R M M S B R S G R R M S M M M G R M M M R M S e e e e -

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

SFT: Dataset & Data-mix

* |nstruction following

Tool datasets. To create data for tool usage applications, we leverage the following procedure:

e Single-step tool use: We start by few-shot generation of synthetic user prompts which, by construction,
require a call to one of our core tools (for example, questions that exceed our knowledge cutoff date).

* Reasoning

Then, still relying on few-shot generation, we generate appropriate tool calls for these prompts, execute
them, and add the output to the model’s context. Finally, we prompt the model again to generate a
final answer to the user’s query based on the tool output. We end up with trajectories of the following

[- Tool use / agentic behavior]

form: system prompt, user prompt, tool call, tool output, final answer. We also filter around 30% this
dataset to remove tool calls that cannot be executed or other formatting issues.

 Coding

I
|
|
|
|
|
|
|
|
|
|
|
: e Multi-step tool use: We follow a similar protocol and first generate synthetic data to teach the model
cee I basic multi-step tool use capabilities. To do this, we first prompt Llama 3 to generate user prompts
I that require at least two tool calls, that can be the same or different tools from our core set. Then,
I conditioned on these prompts, we few-shot prompt Llama 3 to generate a solution consisting of interleaved
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

reasoning steps and tool calls, similar to ReAct (Yao et al., 2022). See Figure 10 for an example of
Llama 3 performing a task involving multi-step tool usage.

e File uploads: We annotate for the following filetypes: .TXT, .DOCX, .PDF, .PPTX, .XLSX, .CSV, .TSV,
.PY, .JSON, .JSONL, .HTML, .XML. Our prompts are based on a provided file, and ask to summarize the
contents of the file, find and fix bugs, optimize a piece of code, perform data analysis or visualization.
See Figure 11 for an example of Llama 3 performing a task involving a file upload.

Synthetic dataset:

- Problem: given the instruction, generate a tool call

- “Inverse problem”: given a tool specification, generate sample
instructions that require the given tool call

— o O R R RS M R R S R R R S R S S S M R R R R e e e e e e e o

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

SFT: Dataset & Data-mix

* |nstruction following

1. Synthetic data generation: execution feedback. The 8B and 70B models show significant performance
improvements when trained on data generated by a larger, more competent model. However, our initial
experiments revealed that training Llama 3 405B on its own generated data is not helpful (and can
even degrade performance). To address this limitation, we introduced execution feedback as a source of

* Reasoning

* Tool use/ agentic behavior

truth, enabling the model to learn from its mistakes and stay on track. In particular, we generate large
dataset of approximately one million synthetic coding dialogues using the following process:

[- Coding]

I

|

|

|

|

|

|

|

|

|

|

|

|

I 2. Synthetic data generation: programming language translation. We observe a performance gap between
: major programming languages (e.g., Python/C++) and less common ones (e.g., Typescript/PHP). This
I is not surprising as we have less training data for less common programming languages. To mitigate
1 this, we supplement our existing data by translating data from common programming languages to
I less common languages (similar to Chen et al. (2023) in the context of reasoning). This is achieved
: by prompting Llama 3 and ensuring quality via syntax parsing, compilation, and execution. Figure 8
: demonstrates an example of synthetic PHP code translated from Python. This improves performance
|
|
|
|
|
|
|
|
|
|
|
|

significantly for less common languages as measured by the MultiPL-E (Cassano et al., 2023) benchmark.

3. Synthetic data generation: backtranslation. To improve certain coding capabilities (e.g., documentation,
explanations) where execution feedback is less informative for determining quality, we employ an
alternative multi-step approach. Using this procedure, we generated approximately 1.2M synthetic
dialogs related to code explanation, generation, documentation, and debugging. Beginning with code
snippets from a variety of languages in our pre-training data:

— o O R R RS M R R S R R R S R S S S M R R R R e e e e e e e o

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

SFT: Dataset & Data-mix

* Intuition:
* Pre-training gives LLM general understanding of language

 SFT during Post-training adds capabilities related to expected usage
contexts: dialogue, coding, agentic tool use, reasoning, etc.

* Challenges:
«How-do-weobtaindataforthesepurposes?

* How do we mix them into SFT dataset?

Avg. # tokens Avg. # tokens

Dataset % of examples Avg. #turns Avg. # tokens in context infinal response
General English 52.66% 6.3 974.0 656.7 317.1
Code 14.89% 2.7 753.3 378.8 374.5
Multilingual 3.01% 2.7 520.5 230.8 289.7
Exam-like 8.14% 2.3 297.8 124.4 173.4
Reasoning and tools 21.19% 3.1 661.6 359.8 301.9
Long context 0.11% 6.7 38,135.6 37,395.2 740.5
Total 100% 4.7 846.1 535.7 310.4

Table 7 Statistics of SFT data. We list internally collected SFT data used for Llama 3 alignment. Each SFT example
consists of a context (i.e., all conversation turns except the last one) and a final response.

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

Avg. # tokens Avg. # tokens

Keeping the capability of a general Dataset % of examples Avg. #turns Avg. # tokens in context in final response

language model, avoiding forgetting General English 52.66% 6.3 974.0 656.7 317.1

| Code 14.89% 2.7 753.3 378.8 374.5

[Keep|ng mult|l|ngua|_ Capab||_|ty present Multlhngual 301% 2.7 520.5 230.8 289.7

Exam-like 8.14% 2.3 297.8 124.4 173.4

Obtimize for modern features such as Reasoning and tools 21.19% 3.1 661.6 359.8 301.9

ptimi: Long context 0.11% 6.7 38,135.6 37,395.2 740.5
reasoning and tool use

Total 100% 4.7 846.1 535.7 310.4

Table 7 Statistics of SFT data. We list internally collected SF'T data used for Llama 3 alignment. Each SFT example
consists of a context (i.e., all conversation turns except the last one) and a final response.

The Llama 3 Herd of Models, Llama Team, Al@Meta, 2024

Today’s Agenda

* Supervised Fine-tuning
- : bieoti
s—Dataset

* Reinforcement Learning
* Learning objective
* Optimization
* Dataset

Ve

Pre-training Database

z28g

Pretrained
(Base) LLM
stage® O\

. Continual
(Opéionsl) Pre-training

Pre-training Database

=2€g

Stage @

Fine-tuning

Stage @ \

Instruction Database

=28g

(Optional)

Human Preference
Alignment with RL
(e.g, RLHF)

Preference Database

Stage @

A

Inference
Task

Descxl'iption g @ @

Benchmark

Instruct q
Code LLM — Evaluation

l

Generated
Source Code

RL: Learning Objectives

RL: Learning Objectives

* Quick review of reinforcement learning
* Core concepts: learn a policy that can maximize return

* Environment (P(s;.1 | 5t a;))
* State/observation (s;)

* Action (a;)

* Reward (7;; return R)

* Policy (1)

RL: Review

Environment (P(s;.1 | 54, a4))
State / observation (s;)
Action (a;)

Reward (7; return R)

Policy (1)

Mountain Car

State: ((px, Py), (Vx, Vy))
Action: a € {—1,0, +1}
Reward: —1 per time step until goal; 0 at the goal

Policy: m, throttle until speed=0, then reverse direction

N e o o e e o e e e e M e e e M e e S M M e G M M e S M M e M M M e Smm M M e e M e e G G e e e

RL:

Environment ()
State / observation (s;)
Action (a)

Reward (7;; return R)
Policy (1)

State: Image (r, g, b)8**84

Action: a € {up, down, no- op}
Reward: —1 per lost, +1 perwin

Policy: i, detect position of the ball; always stay synchronized

RL: Learning Objective

Language Modeling

Environment (P(s;.1 | 54, a4)) Q: “Explain why the sky is blue.”

State / observation (s;)
Action (a;)

Reward (7; return R)

Policy (1ty; 0 is parameters)

A: “The sky appears blue because of Rayleigh scattering — the
way sunlight interacts with Earth’s atmosphere. Here’s the
process step by step: Sunlight is made of many colors
White sunlight actually contains all colors of light...”

State: input token sequence x = [explain, why, the, ...] and the
current output sequence y = [The, sky, appears, ...]

Action: a € X, a single token
Reward: 74 (X,y) a reward model for helpfulness/correctness/...

Policy: gy, the language model parametrized by 6

N e e e e e e R RS S R R R S S S R S S R R S S M S S S R R S M M S S S R R S S S S S S e e e e

Environment (P (s, | 5S¢, a;))
. 1 1 1 State / observation (s;)
RL: Learning Objective PO
Reward (7;; return R)
Policy ()
* Intuition:

* |[n open settings, you only know whether the answer is “good/bad” after
you have generated the entire sentence or have interacted with the user
with multiple turns

* “goodness” of an answer can be evaluated with many metrics:
nhelpfulness, alignment with human values, reasoning clarity, correctness
of the answer, syntax and semantic of a program

Training language models to follow instructions
with human feedback

Long Ouyang*® Jeff Wu* Xu Jiang® Diogo Almeida* Carroll L. Wainwright*

Pamela Mishkin® Chong Zhang Sandhini Agarwal Katarina Slama Alex Ray

John Schulman Jacob Hilton Fraser Kelton Luke Miller Maddie Simens

Amanda Askell’ Peter Welinder Paul Christiano*'

Jan Leike” Ryan Lowe”

OpenAl

Training language models to follow instructions with human feedback, Ouyang et. al., OpenAl, 2022

Training language models to follow instructions
with human feedback

Long Ouyang*

Pamela Mishkin*

John Schulman

Amanda Askell

Jeff Wu* X

Chong Zha

Jacob Hilto!

Jan Leike*

3.5 Models

We start with the GPT-3 pretrained language models from Brown et al. (2020). These models are
trained on a broad distribution of Internet data and are adaptable to a wide range of downstream tasks,
but have poorly characterized behavior. Starting from these models, we then train models with three
different techniques:

Supervised fine-tuning (SFT). We fine-tune GPT-3 on our labeler demonstrations using supervised
learning. We trained for 16 epochs, using a cosine learning rate decay, and residual dropout of 0.2.
We do our final SFT model selection based on the RM score on the validation set. Similarly to Wu
et al. (2021), we find that our SFT models overfit on validation loss after 1 epoch; however, we find
that training for more epochs helps both the RM score and human preference ratings, despite this
overfitting.

Reward modeling (RM). Starting from the SFT model with the final unembedding layer removed,
we trained a model to take in a prompt and response, and output a scalar reward. In this paper we
only use 6B RMs, as this saves a lot of compute, and we found that 175B RM training could be
unstable and thus was less suitable to be used as the value function during RL (see Appendix C|for
more details).

Training language models to follow instructions with human feedback, Ouyang et. al., OpenAl, 2022

Long

Pame

John

'I\ﬂ);ninn lanonaacoa madalc ta fallaw inctrnctinne

3.5 Models

We start with the GPT-3 pretrained language models from Brown et al.|(2020). These models are
trained on a broad distribution of Internet data and are adaptable to a wide range of downstream tasks,

o

but have poorly chara
different techniques:

Supervised fine-tunii
learning. We trained
We do our final SFT 1
et al./(2021), we find
that training for more
overfitting.

Reward modeling (R
we trained a model to
only use 6B RMs, as
unstable and thus was
more details).

In order to speed up comparison collection, we present labelers with anywhere between K = 4 and
K = 9 responses to rank. This produces (12{) comparisons for each prompt shown to a labeler. Since
comparisons are very correlated within each labeling task, we found that if we simply shuffle the
comparisons into one dataset, a single pass over the dataset caused the reward model to overﬁt
Instead, we train on all (I;) comparisons from each prompt as a single batch element. This is much
more computationally efficient because it only requires a single forward pass of the RM for each

completion (rather than (12{) forward passes for K completions) and, because it no longer overfits, it

achieves much improved validation accuracy and log loss.

Specifically, the loss function for the reward model is:

_%E(w,yw’yl),\,p [log (o (76 (z,Yw) — 76 (z,41)))]

loss (0) = (1)

where r¢(z, y) is the scalar output of the reward model for prompt and completion y with parameters
0, y,, is the preferred completion out of the pair of y,, and y;, and D is the dataset of human
comparisons.

Training language models to follow instructions with human feedback, Ouyang et. al., OpenAl, 2022

Environment ()

R L . State / observation (s;)

* Action (a;)
Reward (7;; return R)
Policy (1)
* Before:
* Rewards for LLMs are generated by the environment
* Usually (e.g., mountain car, cartpole, pong)
* Now:

* Rewards for LLMs are provided by
- Reward models need to be separately trained with human preference
- Human preference needs to come from separate datasets

RL:

* Training a reward model
GPT-3 > - GPT-3.5/ChatGPT

In order to speed up comparison collection, we present labelers with anywhere between K = 4 and
K = 9 responses to rank. This produces (I;) comparisons for each prompt shown to a labeler. Since
comparisons are very correlated within each labeling task, we found that if we simply shuffle the
comparisons into one dataset, a single pass over the dataset caused the reward model to overﬁtE
Instead, we train on all (I;) comparisons from each prompt as a single batch element. This is much
more computationally efficient because it only requires a single forward pass of the RM for each
completion (rather than (I;) forward passes for K completions) and, because it no longer overfits, it
achieves much improved validation accuracy and log loss.

Specifically, the loss function for the reward model is:

1
loss () = — < E s,y u1)~D [108 (0 (19 (2, yw) — 1o (z,11)))] (1)

(5)

where 79 (z, y) is the scalar output of the reward model for prompt = and completion y with parameters
0, y., is the preferred completion out of the pair of y,, and y;, and D is the dataset of human
comparisons.

Training language models to follow instructions with human feedback, Ouyang et. al., OpenAl, 2022

Environment (P (s, | 5S¢, a;))
. 1 1 1 State / observation (s;)
RL: Learning Objective PO
Reward (7;; return R)
Policy ()
e Summary

* Use Reinforcement Learning (RL) to fine-tune LLMs to maximize return
e - returns are meant to represent human preference

- mechanically, returns/rewards are generated by reward models

« 2 reward models are trained from human preference datasets

Today’s Agenda

* Supervised Fine-tuning
— et
s—Dataset

* Reinforcement Learning
- : bieoti
* Optimization
* Dataset

Ve

Pre-training Database

z28g

Pretrained
(Base) LLM
stage® O\

. Continual
(Opéionsl) Pre-training

Pre-training Database

=2€g

Stage @

Fine-tuning

Stage @ \

Instruction Database

=28g

(Optional)

Human Preference
Alignment with RL
(e.g, RLHF)

Preference Database

Stage @

A

Inference
Task

Descxl'iption g % @

Benchmark

Instruct q
Code LLM — Evaluation

l

Generated
Source Code

RL: Optimization

* DON (Deep Q-Network)

* Directly model Q-value: the value function of an action Qg (s, a)

* Policy Gradient (REINFORCE) Vo] (0) = Ery[Ve logmg (als)R]
* Directly optimize the policy mg(als)
* Actor-Critic Model (AC) Vo/(8) = Ery[Vg logmg(als)Als, a)]

* Adding a critic V; (s) and “advantage estimate” A(s,a) = R — Vi (s)
* Proximal Policy OptinVel &0 B ©@8me (v|x) (v (x,) — fllogme (v]x) — logmspr(y]x) + 1))]
* To stabilize, we clip the loss based on how far the policy deviates

* Group Relative Policy Optimization (GRPO)
* (Specifically for LLM) grouped normalized advantage A; = (r; — 7) /0o,

RL: Optimization

* (DQN)
* Directly model Q-value: the value function of an action Qg (s, a)

* (REINFORCE) Vo (0) = Er,[Vg logme(als)R]
* Directly optimize the policy mg(als)

* (AC) Vo] (0) = Er,[Vg logmg(als)A(s, a)]
* Adding a critic V4 (s) and “advantage estimate” A(s,a) = R — Vi (s)

* (PPO) Vo] (6) = Eqr,[Vg logma(ylx) (v (x,) — flogmy (y|x) — log mser(y]x) + 1))]

* To stabilize, we clip the loss based on how far the policy deviates

* (GRPO)
 (Specifically for LLM) grouped normalized advantage A; = (r; — 1) /o,

V¢J(¢) = Em,ylzk’vﬂ'tﬁ % Vo 10g7r¢(yi |) (A — B (log 7r¢((?;|ﬁ: + 1)>

effective (sha ped) advantage

Training language models to follow instructions

Long Ouyang* Jeff \

Pamela Mishkin™® Cl

John Schulman Ja|

Amanda Askel

Jal

Reinforcement learning (RL). Once again following Stiennon et al. (2020), we fine-tuned the
SFT model on our environment using PPO (Schulman et al., 2017). The environment is a bandit
environment which presents a random customer prompt and expects a response to the prompt. Given
the prompt and response, it produces a reward determined by the reward model and ends the episode.
In addition, we add a per-token KL penalty from the SFT model at each token to mitigate over-
optimization of the reward model. The value function is initialized from the RM. We call these
models “PPO.”

We also experiment with mixing the pretraining gradients into the PPO gradients, in order to fix the
performance regressions on public NLP datasets. We call these models “PPO-ptx.” We maximize the
following combined objective function in RL training:

objective (¢) :E(w,y)NDﬂgL [ro(x,y) — Blog (WEL(?J | x)/WSFT(y | x))] +

2)
VEz Dproan [108(75 " (2))]

where ng is the learned RL policy, 7557 is the supervised trained model, and Dyyeqrin is the

pretraining distribution. The KL reward coefficient, 3, and the pretraining loss coefficient, -y, control

the strength of the KL. penalty and pretraining gradients respectively. For "PPO" models, -y is set to 0.

Unless otherwise specified, in this paper InstructGPT refers to the PPO-ptx models.

Training language models to follow instructions with human feedback, Ouyang et. al., OpenAl, 2022

& ceepseeck

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via

Reinforcement Learning

DeepSeek-Al

research@deepseek.com

& deepseeck

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via

2. Approach

2.1. Overview

Previous work has heavily relied on large amounts of supervised data to enhance model
performance. In this study, we demonstrate that reasoning capabilities can be significantly
improved through large-scale reinforcement learning (RL), even without using supervised
fine-tuning (SFT) as a cold start. Furthermore, performance can be further enhanced with
the inclusion of a small amount of cold-start data. In the following sections, we present: (1)
DeepSeek-R1-Zero, which applies RL directly to the base model without any SFT data, and
(2) DeepSeek-R1, which applies RL starting from a checkpoint fine-tuned with thousands of
long Chain-of-Thought (CoT) examples. 3) Distill the reasoning capability from DeepSeek-R1 to
small dense models.

& deepseeck

2. Approach

2.1. Overvie

Previous worl
performance.
improved thrc
fine-tuning (S
the inclusion ¢
DeepSeek-R1-
(2) DeepSeek-]

long Chain-of-
small dense m

2.2.1. Reinforcement Learning Algorithm

Group Relative Policy Optimization In order to save the training costs of RL, we adopt Group
Relative Policy Optimization (GRPO) (Shao et al., 2024), which foregoes the critic model that is
typically the same size as the policy model, and estimates the baseline from group scores instead.
Specifically, for each question g, GRPO samples a group of outputs {01,02, - -, 06} from the old
policy mg,,, and then optimizes the policy model my by maximizing the following objective:

Jorro(0) = E[q ~ P(Q), {0}, ~ 76,,(0lg)]

76(0ilq) [mo(0ilg) (1)
5 2 min (2 et (228851 - 1)) - sl
ﬂref(o |Q) nref(oilcp _
Pr (tollter) = 2o ote) ~'%8 otode) ?

where ¢ and B are hyper-parameters, and A; is the advantage, computed using a group of
rewards {r,ry,...,rg} corresponding to the outputs within each group:

ri— mean({rll rp,--- /rG})
A; = ' 3
Std({rll L9y ¢ er}) ()

& deepseeck

2. Approach

21. O

Previo
perfort
improv
fine-tu
the inc
DeepS
(2) Dee

long CI
small ¢

2.2.1.

Grouj
Relati
typica
Specif
policy

where
rewar

2.2.2. Reward Modeling

The reward is the source of the training signal, which decides the optimization direction of RL.
To train DeepSeek-R1-Zero, we adopt a rule-based reward system that mainly consists of two
types of rewards:

¢ Accuracy rewards: The accuracy reward model evaluates whether the response is correct.
For example, in the case of math problems with deterministic results, the model is required
to provide the final answer in a specified format (e.g., within a box), enabling reliable
rule-based verification of correctness. Similarly, for LeetCode problems, a compiler can be
used to generate feedback based on predefined test cases.

¢ Format rewards: In addition to the accuracy reward model, we employ a format reward
model that enforces the model to put its thinking process between “<think>" and ‘< /think>’
tags.

We do not apply the outcome or process neural reward model in developing DeepSeek-R1-Zero,
because we find that the neural reward model may suffer from reward hacking in the large-scale
reinforcement learning process, and retraining the reward model needs additional training
resources and it complicates the whole training pipeline.

& deepseek

2. Approach

21. O

Previo
perfort
improv
fine-tu
the inc
DeepS
(2) Dee

long CI
small ¢

2.2.1.

Grouj
Relati
typica
Specif
policy

where
rewar

2.2.2. Reward Modeling

The reward is the source of the training signal, which decides the optimization direction of RL.
To train DeepSeek-R1-Zero, we adopt a rule-based reward system that mainly consists of two
types of rewards:

¢ Accuracy rewards: The accuracy reward model evaluates whether the response is correct.
For example, in the case of math problems with deterministic results, the model is required
to provide the final answer in a specified format (e.g., within a box), enabling reliable
rule-based verification of correctness. Similarly, for LeetCode problems, a compiler can be
used to generate feedback based on predefined test cases.

¢ Format rewards: In addition to the accuracy reward mod¢” Ea— : — _
model that enforces the model to put its thinking process bg Feward coming from compilers for coding]
tags.

We do not apply the outcome or process neural reward model in developing DeepSeek-R1-Zero,
because we find that the neural reward model may suffer from reward hacking in the large-scale
reinforcement learning process, and retraining the reward model needs additional training
resources and it complicates the whole training pipeline.

@' deepseek

2. Approach

21. O

Previo
perfort
improv
fine-tu
the inc
DeepS
(2) Dee

long CI
small ¢

2.2.1.

Grouj
Relati
typica
Specif
policy

where
rewar

2.2.2. Reward Modeling

The reward is the source of the training signal, which decides the optimization direction of RL.
To train DeepSeek-R1-Zero, we adopt a rule-based reward system that mainly consists of two
types of rewards:

¢ Accuracy rewards: The accuracy reward model evaluates whether the response is correct.
For example, in the case of math problems with deterministic results, the model is required
to provide the final answer in a specified format (e.g., within a box), enabling reliable
rule-based verification of correctness. Similarly, for LeetCode problems, a compiler can be
used to generate feedback based on predefined test cases.

¢ Format rewards: In addition to the accuracy reward model, we employ a format reward
model that enforces the model to put its thinking process betwe
tags.

e
i No reward model for DeepSeek-R1-Zero]

We do not apply the outcome or process neural reward model in developing DeepSeek-R1-Zero,
because we find that the neural reward model may suffer from reward hacking in the large-scale

reinforcement learning process, and retraining the reward model needs additional training
resources and it complicates the whole training pipeline.

GPQA LiveCode

Model AIME 2024 MATH-500 Diamond Bench CodeForces
&deepseek pass@l cons@64 pass@1 pass@1 pass@1 rating
2. Approach OpenAl-ol-mini 63.6 80.0 90.0 60.0 53.8 1820
OpenAl-01-0912 74.4 83.3 94.8 77.3 63.4 1843
21. Oy "
2.2.1. Reir DeepSeek-R1-Zero 71.0 86.7 95.9 73.3 50.0 1444
Previo
perfors gm-’ 2.2 Table 2 | Comparison of DeepSeek-R1-Zero and OpenAl ol models on reasoning-related
improv elatij < P P P &
fine-tu| tyPica -y, benchmarks.
the inc Spf.df To
DeepS(Policy - o
@ lgee ‘ ty] 00 DeepSeek-R1-Zero AIME accuracy during training
long CI
small ¢ 0.8
0.7 1
where 0.6
rewar >
We g 05
be)
rei 04
reg
0.3

—&— rl-zero-pass@1l

—8— rl-zero-cons@16
0.2 1 -—- 01-0912-pass@1
-== 01-0912-cons@64

0 2000 4000 6000 8000
Steps

Figure 2 | AIME accuracy of DeepSeek-R1-Zero during training. For each question, we sample
16 responses and calculate the overall average accuracy to ensure a stable evaluation.

@' deepseek

2. Approach

2.1. Overview

Previous work has heavily relied on large amounts of supervised data to enhance model
performance. In this study, we demonstrate that reasoning capabilities can be significantly
1mproved through large-scale remforcement learmng (RL), even w1thout usmg superv1sed

flne- (O

g:ei 2.3. DeepSeek-R1: Reinforcement Learning with Cold Start

@)D

long| Inspired by the promising results of DeepSeek-R1-Zero, two natural questions arise: 1) Can
smal - reasoning performance be further improved or convergence accelerated by incorporating a small
amount of high-quality data as a cold start? 2) How can we train a user-friendly model that
not only produces clear and coherent Chains of Thought (CoT) but also demonstrates strong
general capabilities? To address these questions, we design a pipeline to train DeepSeek-R1. The
pipeline consists of four stages, outlined as follows.

SFT (cold-start) » RL (reasoning-oriented) > SFT (rejection-sampling) > RL (all-scenario)

Today’s Agenda

* Supervised Fine-tuning
_ et
s—Dataset

* Reinforcement Learning
_ et
— Ontimizat

e Dataset

Ve

Pre-training Database

z28g

Inference

Pretrained
(Base) LLM
stage® O\

(Optional)

Instruction Database IS
Task

g g g Description g % @
Supervised

Fine-tuning C{:;“EISM — Evaluation

(SFT)
/ Stage @ \ / l
q Human Preference
COllt‘ll}ll.al (Optional) Alignment with RL Generated
Pre-training (e.g, RLHF) Source Code

Preference Database

Stage @

Pre-training Database

Stage @

RL: Human Preferences

Training a Helpful and Harmless Assistant with
Reinforcement Learning from Human Feedback

Yuntao Bai; Andy Jones, Kamal Ndousse,

Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort,

Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson Kernion,

Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds,
Danny Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt,
Neel Nanda, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark,
Sam McCandlish, Chris Olah, Ben Mann, Jared Kaplan*

HH-RLHF, Anthropic, Red Teaming Dataset

= stanfordr SHP © Qlike 317 Follow = Stanford NLP 276
[Text Generation 89 Question Answering ~ Modalities: @ Tabular Text rmats: 4} json
arxiv:2112.00861 arxiv:2001.08435 human feedback rlhf preferences reddit preference model
/ Dataset card 8 Data Studio I= Files and versions = ¢xet Community 3
BB Dataset Viewer ted to Parquet <> APl T Embed B Data Studio
Split (3)
train - 349k rows v
earch this dataset
post_id domain upvote_ratio history .
string - Ieng string - cla floaté6s string - Ie
7\; eaEmmEEERll @ —————- -.ll 777777 —
5 7 18 e 1 k
. . . In an interview right before receiving the 2013
bincdo askacadenzabizain Do Nobel prize in physics, Peter Higgs stated that h..
e a . . If any professor is reading this: please do not
gjizl] askacademia_train 0.95 praise students keeping their presentations much..

SHP, Stanford Human Preference Dataset

Datasets: @HuggingFaceH4 stack-exchange-preferences ©
29 Question Answering ~ Modalities: Text Formats: =% parquet Languages:
ags: RLHF preferences human-feedback Stack Exchange Libraries: & Datasets »

| Dataset card & Data Studio I~ Files and versions << xet Community

Q like 133
@ English

Dask & Crg

Stack Exchange Preferences

Today’s Agenda

* Supervised Fine-tuning

— . bieoti
+Pataset

* Reinforcement Learning

Ve

Pre-training Database

z28g

Inference

Pretrained
(Base) LLM
stage® O\

(Optional)

Instruction Database IS
Task

g g g Description g % @
Supervised

Fine-tuning C{:;“EISM — Evaluation

(SFT)
/ Stage @ \ / l
q Human Preference
COllt‘ll}ll.al (Optional) Alignment with RL Generated
Pre-training (e.g, RLHF) Source Code

Preference Database

Stage @

Pre-training Database

Stage @

Logistics — Week 8

* Assignment 3: Coding LLM Agents
* https://github.com/machine-programming/assignment-3
* Fully functional web-app agent. Due: Oct 23 (Thu)

* Oral presentation sign up sheet
* Please sign up! (16/19 received)

* Forming groups for your final projects!
* Form a group of 2-3 before This Sunday (Oct 19)

https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3

