Machine Programming

Lecture 15 - LLM for Software Testing

Logistics — Week 9

* Assignment 3: Coding LLM Agents
* https://github.com/machine-programming/assignment-3
* Fully functional web-app agent. Due: Oct 23 (Thu)

* Forming groups for your final projects!
* Form a group of 2-3 before This Thursday (©et13-Oct 23)

https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3

Review

* What we have learned so far
* Programming languages and synthesis: syntax, semantics, enumeration
* Programming with LLMs: language modeling, prompting, agents, training

Dimensions in Program Synthesis

Behavioral Specification

4 - Whatshould the program do?

\

Synthesis Strategy Structural Specification
How do we find such a program? - Whats the space of the programs?

The Course So Far

Behavioral Specification

4 - Whatshould the program do?

Examples

Types

Functional Specifications
Natural Language

\

Structural Specification
- What s the space of the programs?

hoOnp =

Synthesis Strategy
- How do we find such a program?
General Purpose Programming Language

E tion: Bottom- d Top-D
numeration: Bottom-up and lop-Down Python /Java/ C/Rust/ ...

Programming with Large Language Models

- Next token prediction, prompting, controlled decoding
- lterative refinement, agentic frameworks and tool use
- Pre-training, fine-tuning, reinforcement learning

Custom Domain Specific Languages

Module 3

Behavioral Specification

4 - Whatshould the program do?

\

Structural Specification

Synthesis Strate
y gy - What is the space of the programs?

- How do we find such a program?

Module 3

Synthesis Strategy

How do we find such a program?

Fixed

Behavioral Specification

A

\

- What should the program do?

Structural Specification
- Whatis the space of the programs?

General Purpose Programming Language
Python/Java/C/Rust/ ...

Domain Specific Languages
SQL/LEAN/ROCQ /DATALOG/PDDL/ ...

Module 3

Synthesis Strategy

How do we find such a program?

Fixed

Behavioral Specification
- What should the program do?

Syntax/Semantics/Functional correctness
Optimized for runtime speed

Has no security flaw

Comprehensive test coverage

OhObd=

Structural Specification
- What s the space of the programs?

General Purpose Programming Language
Python/Java/C/Rust/ ...

Domain Specific Languages
SQL/LEAN /ROCQ / DATALOG /PDDL/ ...

Module 3: Overview

* What we have learned so far
* Programming languages and synthesis: syntax, semantics, enumeration
* Programming with LLMs: language modeling, prompting, agents, training

* Module 3: Applications of Machine Programming
* Goal: how synthesis can help with diverse applications
* Application: , , , ,
* Application: , , ,
* Application: , , ,
* Application: Ul, ,

Software Analysis

Testing and Dynamic Analysis

BH I16 := Integer_16(BH_F64);

BH I16 := Integer_16(BH_F64);

Ada: covert 64-bit floating point number to 16-bit signed integer

The Ariane Rocket Disaster

Date: June 4, 1996
Mission: Ariane 5 Flight 501
- European Space Agency

https://www.youtube.com/watch?v=PK ygulLapgA&t=63s

https://www.youtube.com/watch?v=PK_yguLapgA&t=63s
https://www.youtube.com/watch?v=PK_yguLapgA&t=63s

The Ariane Rocket Disaster:

e Qutcome:
 Rocket veered off course after 37 seconds, self-destructed.

The Ariane Rocket Disaster:

e Qutcome:
 Rocket veered off course after 37 seconds, self-destructed.

* What happened:
* The rocket reused Ariane 4’s Inertial Reference System (SRI) software.

* During ascent, the SRI computed a variable BH (Horizontal Bias),
representing horizontal velocity.

* The program executed:
BH_I16 := Integer_16(BH_F64);

The Ariane Rocket Disaster:

e Qutcome:
 Rocket veered off course after 37 seconds, self-destructed.

* What happened:
* The rocket reused Ariane 4’s Inertial Reference System (SRI) software.

* During ascent, the SRI computed a variable BH (Horizontal Bias),
representing horizontal velocity.

* The program executed:
BH_I16 := Integer_16(BH_F64);
* On Ariane 4, BH_F64 never exceeded 32767.
* On Ariane 5 (more powerful), BH_F64 = 65535, causing a numeric overflow.
* In Ada, this raised a Constraint_Error exception (like an “Operand Error?”).

The Ariane Rocket Disaster:

e Qutcome:
 Rocket veered off course after 37 seconds, self-destructed.
 Cost: +

* Have we programmers learned from the mistake?

CvE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

Home > CWE Top 25 > 2024

2024 CWE Top 25 Most Dangerous Software Weaknesses

New to CWE?
Start here!

1D Lookup: (D

| Top 25 Home | |Share via:X| | View in table format ‘ ‘ Key Insights | | Methodology ‘

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-79 | CVEs in KEV: 3 | Rank Last Year: 2 (up 1) A

Out-of-bounds Write
CWE-787 | CVEs in KEV: 18 | Rank Last Year: 1 (down 1) ¥

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

CWE-89 | CVEs in KEV: 4 | Rank Last Year: 3

Use of Hard-coded Credentials
CWE-798 | CVEs in KEV: 2 | Rank Last Year: 18 (down 4) ¥

Integer Overflow or Wraparound
CWE-190 | CVEs in KEV: 3 | Rank Last Year: 14 (down 9) ¥

Uncontrolled Resource Consumption
CWE-400 | CVEs in KEV: 0 | Rank Last Year: 37 (up 13) A

https://cwe.mitre.org/top25/archive/2024/2024 cwe top25.html

https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html

CvE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

Home > CWE Top 25 > 2024

2024 CWE Top 25 Most Dangerous Software Weaknesses

New to CWE?
Start here!

1D Lookup: (D

| Top 25 Home | |Share via:X| | View in table format ‘ ‘ Key Insights | | Methodology ‘

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-79 | CVEs in KEV: 3 | Rank Last Year: 2 (up 1) A

Out-of-bounds Write
CWE-787 | CVEs in KEV: 18 | Rank Last Year: 1 (down 1) ¥

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

CWE-89 | CVEs in KEV: 4 | Rank Last Year: 3

Use of Hard-coded Credentials
CWE-798 | CVEs in KEV: 2 | Rank Last Year: 18 (down 4) ¥

Integer Overflow or Wraparound
CWE-190 | CVEs in KEV: 3 | Rank Last Year: 14 (down 9) ¥

Uncontrolled Resource Consumption
CWE-400 | CVEs in KEV: 0 | Rank Last Year: 37 (up 13) A

https://cwe.mitre.org/top25/archive/2024/2024 cwe top25.html

https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html
https://cwe.mitre.org/top25/archive/2024/2024_cwe_top25.html

of Software Analysis

* Question:
* |If Ariane 5’s code cleanly, why did it still

* |dea:
* Software analysis # compile without error/warning
e Search for hidden before deployment

?

Goals of Software Analysis

Goal ___________|Example _____________|Early WarningSignal

Detect Bugs Off-by-one, numeric overflow, null Static range warnings, failed test
dereference, out-of-bounds cases

Detect Vulnerabilities SQL-injection, buffer overflow, path CWE-based pattern matching
traversal, incorrect permission

Check Correctness Functional specifications, Violated assertions
Algorithmic invariants

Verification Know whether a functional Verifier error, symbolic execution
specification “always holds” traces

Meaure Reliability Coverage (line, block, path), test Uncovered lines, failed test cases

pass rate

Forms of Software Analysis

Static Analysis Dynamic Analysis

~orms of Software Analysis

Static Analysis Dynamic Analysis

Examine code without concrete execution Observes program behavior while executing

of Software Analysis

Examine code without concrete execution Observes program behavior while executing
- Taint analysis - Unit testing
- Reachability analysis - Fuzzing
- Abstract interpretation - Property-based testing

- Symbo“c execution - Penetration teSting

Forms of Software Analysis

Dynamic Analysis

(This Lesson)

Observes program behavior while executing

Unit testing

Fuzzing
Property-based testing
Penetration testing

* Some bugs only manifest when code runs
* Runtime errors
* Unhandled exceptions
* Errors dependent on external environments

* Want to concretely execute code
* Observe program behavior
* Analyze potential mistakes

Dynamic Testing

Unit Testing

Human-written tests
in the form of concrete
input-output

assert f(2) ==

Dynamic Testing

Unit Testing Fuzzing
Human-written tests Randomly
in the form of concrete generating

input-output test inputs

for 1 in 0..1074:
assert f(2) == X = gen_input()
f(x)

Dynamic Testing

Unit Testing Fuzzing
Human-written tests Randomly
in the form of concrete generating
input-output test inputs

for i in 0..1074:

assert f(2) == X = gen_input()
f(x)

Property-based testing

Randomly generating
test inputs, but with

properties checking outputs

X = gen_input()
y = f(x)
assert property(x,y)

for i in 0..1074:

Dynamic Testing

Unit Testing Fuzzing
Human-written tests Randomly
in the form of concrete generating
input-output test inputs

for i in 0..1074:

assert f(2) == X = gen_input()
f(x)

Property-based testing

Randomly generating
test inputs, but with

properties checking outputs

X = gen_input()
y = f(x)
assert property(x,y)

for i in 0..1074:

Penetration testing

Crafting adversarial inputs
to trigger vulnerabilities rather

than getting outputs

try:
f(very_bad_input)
assert false

except:
assert no_bad_behavior

Unit Testing

Human-written tests
in the form of concrete
input-output

assert f(2) ==

Fuzzing

Randomly
generating
test inputs

for i in 0..10%4:
X = gen_input()
f(x)

Human Effort: figure out input-
outputs, write the test cases

Property-based testing

Randomly generating
test inputs, but with

properties checking outputs

X = gen_input()
y = f(x)
assert property(x,y)

for i in 0..1074:

Penetration testing

Crafting adversarial inputs
to trigger vulnerabilities rather

than getting outputs

try:
f(very_bad_input)
assert false

except:
assert no_bad_behavior

Human Effort: write the input
generator and fuzzing harness

Unit Testing

Human-written tests
in the form of concrete
input-output

assert f(2) ==

Fuzzing

Randomly
generating
test inputs

for i in 0..10%4:
X = gen_input()
f(x)

Human Effort: figure out input-
outputs, write the test cases

Property-based testing

Randomly generating
test inputs, but with

properties checking outputs

X = gen_input()
y = f(x)
assert property(x,y)

for i in 0..1074:

Penetration testing

Crafting adversarial inputs
to trigger vulnerabilities rather

than getting outputs

try:
f(very_bad_input)
assert false

except:
assert no_bad_behavior

Human Effort: write the input
generator and fuzzing harness

Unit Testing

Human-written tests
in the form of concrete
input-output

assert f(2) ==

Fuzzing

Randomly
generating
test inputs

for 1 in 0..1074:
X = gen_input()
f(x)

Human Effort: figure out input-
outputs, write the test cases

Property-based testing

Randomly generating
test inputs, but with

properties checking outputs

X = gen_input()
y = f(x)
assert property(x,y)

for i in 0..1074:

Penetration testing

Crafting adversarial inputs
to trigger vulnerabilities rather

than getting outputs

try:
f(very_bad_input)
assert false

except:
assert no_bad_behavior

Human Effort: write the input
generator, harness and the property

Human Effort: write the input
generator and fuzzing harness

Unit Testing

Human-written tests
in the form of concrete
input-output

assert f(2) ==

Fuzzing

Randomly
generating
test inputs

for 1 in 0..1074:
X = gen_input()
f(x)

Human Effort: figure out input-

outputs, write the test cases

Human Effort: figure out the very bad
input, describe the bad behavior

Property-based testing

Randomly generating
test inputs, but with

properties checking outputs

X = gen_input()
y = f(x)
assert property(x,y)

for i in 0..1074:

Penetration testing

Crafting adversarial inputs
to trigger vulnerabilities rather

than getting outputs

try:
f(very_bad_input)
assert false

except:
assert no_bad_behavior

Human Effort: write the input
generator, harness and the property

: Precision Shots

* Human effort
* Figure out expected input/output pairs (multiple)
* Write a test case for each input/output pairs (multiple)

e Goal

* Maximize confidence via coverage (approx.: line coverage)
* Execute precise, human-chosen inputs that exercise specific code paths
* Error handling is a path too!

Program - Line coverage: 0/5 (0%)

def calculate_interest(balance: float, months: int) —> float:
rate = 0.02 # 2% per month
if months > 12:
rate = 0.03 # higher rate for long-term deposits
return balance x rate / months

Program - Line coverage: 0/5 (0%)

def calculate_interest(balance: float, months: int) —> float:
rate = 0.02 # 2% per month
if months > 12:
rate = 0.03 # higher rate for long-term deposits

return balance x rate / months

Test 1

def test _short_term_interest():
assert calculate_interest(1000, 6) == pytest.approx(3.33)

Program - Line coverage: 3/5 (60%)

if months > 12:
rate = 0.03 # higher rate for long-term deposits

Test 1

def test _short_term_interest():
assert calculate_interest(1000, 6) == pytest.approx(3.33)

Program - Line coverage: 3/5 (60%)

def calculate_interest(balance: float, months: int) —> float:
rate = 0.02 # 2% per month
if months > 12:
rate = 0.03 # higher rate for long-term deposits
return balance x rate / months

Test 1

def test _short_term_interest():
assert calculate_interest(1000, 6) == pytest.approx(3.33)

Test 2

def test_long_term_interest():
assert calculate_interest (1000, 24) == pytest.approx(1000 *x 0.03 / 24)

Program - Line coverage: 5/5 (100%)

def test _short_term_interest():
assert calculate_interest(1000, 6) == pytest.approx(3.33)

Test 2

def test_long_term_interest():
assert calculate_interest (1000, 24) == pytest.approx(1000 x 0.03 / 24)

Are we done covering everything?]

Program — Line coverage: 5/5 (100%)

def calculate_interest(balance: float, months: int) —> float:
rate = 0.02 # 2% per month
if months > 12:
rate = 0.03 # higher rate for long-term deposits
return balance x rate / months

Test 1

def test _short_term_interest():
assert calculate_interest(1000, 6) == pytest.approx(3.33)

Test 2

def test_long_term_interest():
assert calculate_interest (1000, 24) == pytest.approx(1000 *x 0.03 / 24)

Are we done covering everything?]

Program - Line coverage: 5/5 (100%)

def calculate_interest(balance: float, months: int) —> float:
rate = 0.02 # 2% per month
if months > 12:
rate = 0.03 # higher rate for long-term deposits
return balance x rate / months

S~
[4 No! \
Test 1

def test _short_term_interest():
assert calculate_interest(1000, 6) == pytest.approx(3.33)

Test 2

def test_long_term_interest():
assert calculate_interest (1000, 24) == pytest.approx(1000 *x 0.03 / 24)

Are we done covering everything?]

Program - Line coverage: 5/5 (100%)

def calculate_interest(balance: float, months: int) —> float:
rate = 0.02 # 2% per month
if months > 12:
rate = 0.03 # higher rate for long-term deposits
return balance x rate / months

S~
(—l
No! \
Test 1

s ~
def test _short_term_interest(): CWE-369: Divide By Zero

assert calculate_interest (106

Weakness ID: 369

Test 2 Vulnerability Mapping: ALLOWED

Abstraction: Base

def test_long_term_interest(): >
assert calculate_interest (1000, 24) == pytest.approx(1000 *x 0.03 / 24)

Are we done covering everything?]

Program - Line coverage: 5/5 (100%)

def calculate_interest(balance: float, months: int) —> float:
rate = 0.02 # 2% per month
if months > 12:
rate = 0.03 # higher rate for long-term deposits
return balance x rate / months

S~
[4 No! \
Test 1

def test _short_term_interest():
assert calculate_interest(1000, 6) == pytest.approx(3.33)

Test 2

def test_long_term_interest():
assert calculate_interest (1000, 24) == pytest.approx(1000 *x 0.03 / 24)

Test 3

def test_zero_months_divide_by_ zero(): # covers implicit error path
with pytest.raises(ZeroDivisionError):
calculate_interest(1000, 0)

Automated Unit Test Improvement using Large Language Models
at Meta

Nadia Alshahwan"
Jubin Chheda
Anastasia Finegenova
Beliz Gokkaya
Mark Harman
Inna Harper
Alexandru Marginean
Shubho Sengupta

Eddy Wang
Meta Platforms Inc.,
Menlo Park, California, USA

Automated Unit Test Improvement using Large Language Models at Meta, Alshahwan et. al., FSE 2024

https://arxiv.org/pdf/2402.09171
https://arxiv.org/pdf/2402.09171
https://arxiv.org/pdf/2402.09171
https://arxiv.org/pdf/2402.09171

Automated Unit Test Improvement using Large Language Models
at Meta

Nadia Alshahwan*
Jubin Chheda
Anastasia Finegenova
Beliz Gokkaya
Mark Harman
Inna Harper
Alexandru Marginean
Shubho Sengupta

Eddy Wang

MMata DI

Pre-Process

&

mproves _ L]
Yes Passes Yes coverage Yes Post-Process o lef

LLMs candidate Assuredly Onward

test cases improved code
review

No > No test class .
in Cl
[} "No
[amm |

Automated Unit Test Improvement using Large Language Models at Meta, Alshahwan et. al., FSE 2024

https://arxiv.org/pdf/2402.09171
https://arxiv.org/pdf/2402.09171
https://arxiv.org/pdf/2402.09171

Automated Unit Test Improvement using Large Language Models

LLMs candidate
test cases

é%@hw
-No-
[

,@-MO Diff

Luuy \A4 dllB
Meta Platforms Inc.,
Menlo Park, California, USA

Add Coverage: 25

Pass: 57

Build: 75

All: 100

Rejected: 75

Figure 2: Sankey diagram showing the filtration process out-
comes (as percentages of all test cases) from the Experimental
Study on Instagram components for Reels and Stories prod-
ucts, using the four prompt strategies from Table 2 and the
two language models, LLM1 and LLM2.

Automated Unit Test Improvement using Large Language Models at Meta, Alshahwan et. al., FSE 2024

https://arxiv.org/pdf/2402.09171
https://arxiv.org/pdf/2402.09171
https://arxiv.org/pdf/2402.09171

3.4.1 Deployment at the Facebook App Test-a-thon December 2023.
In this deployment, we had sufficient confidence to automatically
submit recommendations from TestGen-LLM to engineers. There
was no engineer pre-training process, no specific test-a-thon ex-

Automated Unit Test

«w| pectations, and no additional context provided to the engineers.
This gave us a realistic assessment of the engineers’ response to
LLM-generated test recommendations provided ‘out of the box’.
rarezs. Qverall, over 50% of the diffs submitted were accepted by devel-
s Opers, a figure which rises to almost 70% of those which received

a review by developers. Specifically, of the 280 diffs generated by

TestGen-LLM:

e 144 were accepted by the engineer reviewing them.
e 64 were rejected and/or abandoned.

e 61 did not receive a review.

e 11 were withdrawn.

Automated Unit Test Improvement using Large Language Models at Meta, Alshahwan et. al., FSE 2024

https://arxiv.org/pdf/2402.09171
https://arxiv.org/pdf/2402.09171
https://arxiv.org/pdf/2402.09171

CoverUp: Coverage-Guided LLM-Based Test Generation

JUAN ALTMAYER PIZZORNO, University of Massachusetts Amherst, United States
EMERY D. BERGER?, University of Massachusetts Amherst / Amazon, United States

CoverUp: Coverage-Guided LLM-Based Test Generation

JUAN ALTMAYER PIZZORNO, University of Massachusetts Amherst, United States
EMERY D. BERGER®, University of Massachusetts Amherst / Amazon, United States

/——\

static analysis

LLM-driven
tool function
request

segment >

code

. source

: code

1

]

. .
: measure suite
' coverage
1

]

|]

] . .

' existing

. test suite

1

prompt
LLM

L

source code

segments

continue dialogue if
tests lack coverage
or fail

) execute tests

measuring
coverage

tests ok

——{ integration
check

new tests

final
test suite

optionally run again
to refocus on
missing coverage

extended
test suite

R L LT |

CoverUpP: Coverage-Guided LLM-Based Test Generation

JUA
EME

. continue dialogue if
it tests lack coverage
tool function

static analysis or fail
Nest /—\

source
code

'
'
'
'
'
i meas|
' co
'
'
'

, existing
, testsuite

a statement assigning the LLM the persona [White et al. 2023] of an “expert Python test-
driven developer”, intended to help guide it towards high quality tests;

@ a sentence pointing out the code excerpt (segment), identifying what file it comes from, and
stating what lines or branches do not execute when tested. The portion specifying the lines
and branches missing coverage is compressed using line ranges, simplifying the prompt
and reducing token usage.

@ a request for pytest test functions and an encouragement for the LLM to use the provided

tool function;
a series of other requests, such as “include assertions” and “avoid state pollution”, to steer

the result towards usable tests;

@ a request that the response only include the new Python tests to facilitate its extraction
from the response and to reduce token usage; and
the code segment, prefixed by generated import statements and tagging the lines lacking
(line or branch) coverage with their numbers.

CoverUpP: Coverage-Guided LLM-Based Test Generation

JUA
EMI

. continue dialogue if
it tests lack coverage
— tool function

»| static analysis 1\ or fail
request /\

@ a statement assigning the LLM the persona [White et al. 2023] of an “expert Python test-

@

CHCHECKC,

driven developer”, intended to help guide it towards high quality tests;
a sentence pointing out the code excerpt (segment), identifying what file it comes from, and

ctating wrhat linac ar hranchac da nat avecnte wrhen tected The nartion _enecifizing the linec

®

This test still lacks coverage: line 615 and branches 603->exit, 610->608, 618->exit
do not execute.

@

Modify it to correct that; respond only with the complete Python code in backticks.
Use the get_info function as necessary.

Fig. 6. Example of a coverage follow-up prompt: CoverUP indicates to the LLM that a line and some
branches still weren’t covered (1), asking that it correct the test (2).

CoverUpP: Coverage-Guided LLM-Based Test Generation

LLM-driven continue dialogue if
JU A —P| static analysis <\t°°| function tests Iag:(fzﬁverage
request /\
EME
i @ a statement assigning the LLM the persona [White et al. 2023] of an “expert Python test-
H soue driven develoner”_intended to heln onide it towards hich analitv tests:
coaqe| @ @
' This
existi do no 100 Overall Coverage Obtained on the CM Suite (more is better) 100 Median Per-module Coverage on the CM Suite (more is better)
E tests HEEE CodaMosa (codex) mmm CodaMosa (codex)
...... @ mmm CodaMosa (gptdo) = CodaMosa (gptdo)
@ " mmm CoverUp a0 mmm CoverUp
Modif
@ Use t
S S
Fig.6.| o N
@ branch g g
fromt] S8 * 8*
@ the co
(line o ® ? l
[o
line branch line + branch line branch line + branch
Fig. 12. [RQ1] CoverUP yields higher overall and median per-module coverage: Across the board,
CoverUp yields higher coverage than CopaAMosa, whether measured over the entire suite or on a module-by-
module basis.

for i in 0..1074:

: Chaos with Purpose « = gen_input()

f(x)

e Goal

* Explore huge input spaces automatically to trigger failures (crashes,
exceptions, timeouts, sanitizer hits)

* Unlike unit tests, fuzzing does not know the correct output. It detects
incorrect behavior by symptoms

e Method

* Massively and randomly generate inputs to programs

Fuzzing: The Loop

Input Mutation Engine

\ 4

Seed Input Generated Fuzzing Program : Outcome
Inputs Harness (Failure/Coverage)

Instrumentation }

int process_input(const uint8_t xdata, size_t size) {
if (size < 2) return 0; // need at least 2 bytes: cmd + length
uint8 t cmd = datalo];
uint8_t n = datalll; // number of bytes to copy

char buf[16]; // fixed-size buffer
int secret = 0x41414141; // adjacent variable

// If cmd == 0x42 we write to buffer
if (cmd == 0x42) {

// Write to buffer

buf[n] = 0x00;
}

// Return secret so program behavior may subtly change if corrupted
return secret;

int process_input(const uint8_t xdata, size_t size) {
if (size < 2) return 0; // need at least 2 bytes: cmd + length
uint8 t cmd = datalo];
uint8_t n = datall]; // number of bytes to copy

char buf[16]; // fixed-size buffer
int secret = 0x41414141; // adjacent variable

// If cmd == 0x42 we write to buffer

if (cmd == 0x42) {
// Intentionally naive: no bounds check on n relative to buf size
buf[n] = 0x00;

Iy

// Return secret so program behavior may subtly change if corrupted
return secret;

Memory (Stack in bytes)

15
14

0x41

0x41

0x41

0x41

0x00

0x00

0x00

0x00

> secret

> buf

int process_input(const uint8_t xdata, size_t size) {
if (size < 2) return 0; // need at least 2 bytes: cmd + length
uint8 t cmd = datalo];
uint8_t n = datall]; // number of bytes to copy

char buf[16]; // fixed-size buffer
int secret = 0x41414141; // adjacent variable

// If cmd == 0x42 we write to buffer

if (cmd == 0x42) {
// Intentionally naive: no bounds check on n relative to buf size
buf[n] = 0x00;

Iy

// Return secret so program behavior may subtly change if corrupted
return secret;

[mut({@mz, 16}, 2)]

Memory (Stack in bytes)

15
14

0x41

0x41

0x41

x4t 0x00

0x00

0x00

0x00

0x00

> secret

> buf

int process_input(const uint8_t xdata, size_t size) {
if (size < 2) return 0; // need at least 2 bytes: cmd + length
uint8 t cmd = datalo];
uint8_t n = datall]; // number of bytes to copy

char buf[16]; // fixed-size buffer
int secret = 0x41414141; // adjacent variable

// If cmd == 0x42 we write to buffer

if (cmd == 0x42) {
// Intentionally naive: no bounds check on n relative to buf size
buf[n] = 0x00;

Iy

// Return secret so program behavior may subtly change if corrupted
return secret;

[mut({@mz, 16}, 2)]

Issue:

- Thereis an out-of-bounds buffer write!
- But the program will not crash!

- How do we still detect the bug?

Memory (Stack in bytes)

15
14

0x41

0x41

0x41

x4t 0x00

0x00

0x00

0x00

0x00

> secret

> buf

int process_input(const uint8_t xdata, size_t size) {

if (size < 2) return 0; // need at least 2 bytes: cmd + length

0x41

uint8 t cmd = datalo];
uint8_t n = datall]; // number of bytes to copy

0x41

char buf[16]; // fixed-size buffer

0x41

Memory (Stack in bytes)

> secret

2024 CWE Top 25 Most Dangerous Software Weaknesses

Top 25 Home Share via: X View in table format Key Insights Methodology

CWE-79 | CVEs in KEV: 3 | Rank Last Year: 2 (up 1) A

Out-of-bounds Write
CWE-787 | CVEs in KEV: 18 | Rank Last Year: 1 (down 1) ¥

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

Issue:

- Thereis an out-of-bounds buffer write!
- But the program will not crash!

- How do we still detect the bug?

int process_input(const uint8_t xdata, size_t size) {
if (size < 2) return 0; // need at least 2 bytes: cmd + length
uint8 t cmd = datalo];
uint8_t n = datall]; // number of bytes to copy

char buf[16]; // fixed-size buffer
int secret = 0x41414141; // adjacent variable

// If cmd == 0x42 we write to buffer

Memory (Stack in bytes)

15
14

if (cmd == 0x42) {
// Intentionally naive: no bounds check on n relative to buf size
buf[n] = 0x00;
}
// Return secret so program behavior may subtly change if corrupted
return secret;
b
process_input({0x42, 16}, 2)]
Issue: Solution:
- Thereis an out-of-bounds buffer write! - Add Sanitizer!

- But the program will not crash!
- How do we still detect the bug?

0x41

0x41

0x41

x4t 0x00

0x00

0x00

0x00

0x00

> secret

> buf

int process_input(const uint8_t xdata, size_t size) {
if (size < 2) return 0; // need at least 2 bytes: cmd + length
uint8 t cmd = datalo];
uint8_t n = datall]; // number of bytes to copy

char buf[16]; // fixed-size buffer
int secret = 0x41414141; // adjacent variable

// If cmd == 0x42 we write to buffer

if (cmd == 0x42) { 1o
if (n >= 16) SANITIZER_ERROR(“out-of-bounds write”) 14
buf[n] = 0x00;

Iy

// Return secret so program behavior may subtly change if corrupted 1

return secret;

} 0

[mut({@mz, 16}, 2)]

Issue: Solution:

- Thereis anout-of-bounds buffer write! -
- But the program will not crash!
- How do we still detect the bug?

Add Sanitizer!

0x41

0x41

0x41

x4t 0x00

0x00

0x00

0x00

0x00

Memory (Stack in bytes)

> secret

> buf

Program Instrumentation

P

Original Program Program

P and P’ are equivalent under behavior
can expose more failure modes than P

Fuzzing: The Loop

Input Mutation Engine

\ 4

Seed Input Generated Fuzzing Program : Outcome
Inputs Harness (Failure/Coverage)

Instrumentation J

Fuzzing Harness

* For unit tests:
* We come up with a single input-output pair
* We write a test case that runs the program on input, compares the output

* For fuzzing:
* We have automatically generated input

Fuzzing Harness

* For unit tests:
* We come up with a single input-output pair
* We write a test case that runs the program on input, compares the output

* For fuzzing:
* We have automatically generated input

Fuzzing Harness

* For unit tests: We have to do this 1
« We come up with a single input-output pair ("2 'etortmes:

* We write a test case that runs the program on input, compares the output

* For fuzzing:
* We have automatically generated input
* \We write a test case that runs the program on input // < HARNESS

Can we just do this one
time or only a few times?

O pnggroup / libpng Q Type (/] to search

<> Code () Issues 144 19 Pull requests 20 () Discussions (») Actions [fJ Projects [0 Wiki @ Security |~ Insights
i libpng Public ® Watch 53 ~
¥ libpng16 ~ ¥ 11 Branches © 1625 Tags Q Goto file t Add file ~ <> Code ~

This branch is 11 commits ahead of, 99 commits behind 1ibpng18 .

K‘l stoeckmann and ctruta api! Remove the experimental (and incomplete)... @8 + bd41aa6 - 3 weeks ago {Y) 4,459 Commits
O0J Readme
0 .githubjworkflows ci: Add GitHub Actions for verifying libpng on Linux, mac... last month &5 View license
A~ Activity
M arm chore: Clean up the error directives 6 months ago
(=) Custom properties
B c ci: Run autogen.sh without -—maintainer in ci_verify_con... last month Y% 1.5k stars
; - - . &® 53 watchin
BB contrib refactor: Delete conditional compilation for libpng 1.6.0 or... last month 2
% 721 forks
0 intel [libpng16] chore: Clean up the leading blank lines from all... last year Report repository
By ra ra rd

S 11

% Fork 721 - ¥ Star 1.5k -

About

LIBPNG: Portable Network Graphics
support, official libpng repository

& libpng.sf.net

https://github.com/pnggroup/libpng

https://github.com/pnggroup/libpng

= O pnggroup / libpng Q Type (/] to search S8 ~ ++ O 1 &

<> Code (© lIssues 144 11 Pullrequests 20) Discussions () Actions [Projects [0 wiki @ Security |~ Insights

:|ibpng Public ® Watch 53 ~ % Fork 721 - ¢ Star 15k -

¥ libpng16 ~ ¥ 11 Branches © 16251

= O pnggroup / libpng Q Type (7]to search

This branch is 11 commits ahead of, 99 commit{

<> Code (© Issues 144 19 Pullrequests 20 0 Discussions () Actions [Projects [0 Wiki () Security [~ Insights

P}_ stoeckmann and ctruta api! Remove the

B githubjworkfiows [l ¥ libpng16 ~ libpng/contrib [oss-fuzz/ & Q Go to file
M am

LR @}_ jbowler and ctruta [libpng16] chore: Clean up the leading blank lines from all source files @& v

M contrib

M intel

This branch is 11 commits ahead of, 99 commits behind 1ibpng18 .

Name Last commit message
ockerfile evert "oss-fuzz: Update the ile, the Docker file and the bui...
[Dockerfil R " f Upd he README file, the Docker fil d the bui
tx evert "oss-fuzz: Update the ile, the Docker file and the bui...
[README.txt R t" f Update the README file, the Docker fil d the bui
uild.s evert "oss-fuzz: Update the ile, the Docker file and the bui...
(Y build.sh R " f Upd he README file, the Docker fil d the bui
(Y libpng_read_fuzzer.cc [libpng16] chore: Clean up the leading blank lines from all source files
(Y libpng_read_fuzzer.options Revert "oss-fuzz: Transfer to an external repo and remove from this r...
Y png.dict Revert "oss-fuzz: Transfer to an external repo and remove from this r...

https://github.com/pnggroup/libpng

https://github.com/pnggroup/libpng

9

<> Cod

pnggroup / libpng

(D lssues 144 79 _Pull requests 20 1D (N _Actions

= O pnggroup / libpng

<> Code (© Issues 144 11 Pullrequests 20) Disq

[0 ¥ libpngl6 ~ libpng / contrib / oss-fuzz | (3

@}, jbowler and ctruta [libpng16] chore: Clean up the leading bla
This branch is 11 commits ahead of, 99 commits behind 1ibpng18

Name

Bl ..

[Dockerfile

[README.txt

[build.sh

Y libpng_read_fuzzer.cc

[libpng_read_fuzzer.options

[png.dict

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
419
120
121
122
123
124
125
126
127
128
129
130
131
132
133

v

// Entry point for LibFuzzer.
// Roughly follows the libpng book example:
// http://www.libpng.org/pub/png/book/chapter13.html
extern "C" int LLVMFuzzerTestOneInput(const uint8_t* data, size_t size) {
if (size < kPngHeaderSize) {
return 9;

std::vector<unsigned char> v(data, data + size);
if (png_sig_cmp(v.data(), @, kPngHeaderSize)) {
// not a PNG.
return 0;

PngObjectHandler png_handler;

png_handler.png_ptr = nullptr;
png_handler.row_ptr = nullptr;
png_handler.info_ptr = nullptr;

png_handler.end_info_ptr = nullptr;
png_handler.png_ptr = png_create_read_struct
(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
if (!png_handler.png_ptr) {
return 0;

png_handler.info_ptr = png_create_info_struct(png_handler.png_ptr);
if (!png_handler.info_ptr) {
PNG_CLEANUP

return 0;

png_handler.end_info_ptr = png_create_info_struct(png_handler.png_ptr);
if (!png_handler.end_info_ptr) {
PNG_CLEANUP

return 9;

https://github.com/pnggroup/libpng/blob/libpng16/contrib/oss-fuzz/libpng read fuzzer.cc

https://github.com/pnggroup/libpng/blob/libpng16/contrib/oss-fuzz/libpng_read_fuzzer.cc
https://github.com/pnggroup/libpng/blob/libpng16/contrib/oss-fuzz/libpng_read_fuzzer.cc
https://github.com/pnggroup/libpng/blob/libpng16/contrib/oss-fuzz/libpng_read_fuzzer.cc

Fuzzing Harness: Key Message

* A single wide-capturing test case that takes a single buffer as input
that we do not care about in the beginning
or a package
or capture failures and exceptions

* |n practice, a library may be accompanied multiple harnesses
* But not to the level of the amount of unit test cases

Fuzzing: The Loop

Input Mutation Engine

\ 4

Seed Input Generated Fuzzing Program : Outcome
Inputs Harness (Failure/Coverage)

Instrumentation J

Seed Input and Mutation Engine

* Seed Input

* Typically some valid inputs to a program
 E.g., an HTML for a browser, a PNG for libpng, a JSON for a JSON parser

* Mutation Engine
* With a single input, we may get from the execution:
* E.g., coverage, error, command line outputs, etc.

* We may use the coverage to guide the mutation engine to the
seed input to something else

« E.g.,JSON“[1, 2, 3]1"=>“[1, 2,1"
, the mutation leads us to

Infinite Monkey Theorem

“a monkey hitting keys independently
and at random on a typewriter keyboard
for an infinite amount of time will almost
surely type any given text, including the
complete works of William

Shakespeare.”

Seed Input and Mutation Engine

* Seed Input

* Typically some valid inputs to a program
 E.g., an HTML for a browser, a PNG for libpng, a JSON for a JSON parser

* Mutation Engine
* With a single input, we may get from the execution:
* E.g., coverage, error, command line outputs, etc.

* We may use the coverage to guide the mutation engine to the
seed input to something else

« E.g.,JSON“[1, 2, 3]1"=>“[1, 2,1"
, the mutation leads us to

Fuzzing: The Loop

Input Mutation Engine

\ 4

Seed Input Generated Fuzzing Program : Outcome
Inputs Harness (Failure/Coverage)

Instrumentation J

Fuzzing in the Wild: AFL

/

google/AFL

american fuzzy lop - a security-oriented fuzzer

m Fuzzing Loop”]

A 24 © 54 w 4k % 663

Contributors Issues Stars Forks

o~
<J

AFL++: Combining Incremental Steps of Fuzzing Research

Andrea Fioraldi', Dominik Maier*, Heiko EiBfeldt, Marc Heuse$
{andrea, dominik, heiko, marc}@aflplus.plus
tSapienza University of Rome, $TU Berlin, 3The Hacker’s Choice

AFL++: Combining Inc

Andrea Fioraldi, Domin
{andrea, domir

tSapienza University o

5500 4500
1700 5250
4000
9 o o
51650 gSOOO g
8 g 4750 3 3500
o ° o
,%01600 %04500 %ﬁ
g g g 3000
2 1550 g 4250]
= = =
4000 2500
1500
5180 2000
1450
R A & &P
Time Time
(a) Coverage growth in openthread (b) Coverage growth for the bloaty fuzz target
1450
4400 1200
1400
1100
L1350 %4200 .
2 500 & £ 1000
S 130 15} 8
5 555 5 1000 é 900
° ° o
tl ¥ 3800 T 80
51200 E g
§1150 23600 g 100
600
1100 3400
500
1050
3200
YIS FP TSI TP
R R
Time Time
(d) Coverage growth in libjpeg-turbo (e) Coverage growth for harfbuzz
1750
1500 1800
L
9 ° %
21250 £ 1700 g
5 5 g
€ 1000 S g
< ”_ < 1600 7
g g 2
2 g 3
g 500 Z 1500 =
250
1400
0
& & S F &S R R I A AIC A G e g O
Time Time Time
(g) Coverage growth in libpcap (h) Coverage growth in mbedtls (i) Coverage growth in zlib
[[Default] [RedQueen [Ngram4, Rare [Ngram4 [MOpt, RedQueen [Jj MOpt

Fuzzing in the Wild: OSS-Fuzz

/

- Upstream project

Builder
(jenkins.io)

£

google/oss-fuzz

O

2. Commit build configs

GCS bucket
5. Download

pload e and fuzz

ClusterFuzz

1. Write fuzzers

6. File bugs,
Verify fixes

8. Fix bugs .
f—T=1 Track deadlines)
m' Sheriffbot

Issue tracker (monorail)

Developer

Fuzzing in the Wild: OSS-Fuzz

Coverage Report
) . .) 59 /* multiply a given value by the CORDIC shrink factor */
View results by: Directories | Files])
60 static FT _Fixed
PATH LINE COVERAGE FUNCTION COVERAGE ~ REGION COVERAGE 61 ft _trig downscale(FT Fixed val)
autofit/ 89.65% (6801/7586) 88.64% (78/88) 86.09% (3280/3810) 62 111k {
base/ 73.47% (7650/10413) 77.81% (249/320) 62.89% (5010/7966) 63 111k FT Int s = 1;
bdf/ 94.60% (2503/2646) 97.30% (36/37) 92.54% (2133/2305) 64 111K
cff/ 91.68% (5048/5506) 92.08% (93/161) 89.75% (2880/3209) 11k
cid/ 96.03% (1717/1788) 93.94% (31/33) 94.75% (1100/1161) 63 _
9zip/ 95.54% (1435/1502) 94.12% (32/34) 88.73% (1299/1464) 66 | 111k if (val <0)
lzw/ 79.80% (482/604) 83.33% (15/18) 76.90% (263/342) 67 ° {
pcf/ 94.46% (1722/1823) 83.87% (26/31) 93.17% (1445/1551) 68 0 val = -val;
pfr/ 91.69% (2603/2839) 91.49% (43/47) 92.17% (2049/2223) 69 0 s = -1;
psaux/ 91.19% (11504/12615) 96.12% (198/206) 88.69% (5990/6754) 70 0 }
pshinter/ 95.20% (2957/3106) 92.41% (73/79) 91.25% (1356/1486) 71 111k
psnames/ 2l euiis Db Ly st Ll C £l 72 111k /* 0x40000000 comes from regression analysis between true */
raster/ 96.07% (2002/2084) 90.48% (38/42) 91.34% (1539/1685) 73 111k /* and CORDIC hypotenuse, so it minimizes the error %/
fnt/ 89.03% (8089/9086 96.00% (144/150 87.35% (6187/7083 .
— ik = o SRR, ol Skl 74 111k val = (FT _Fixed) (
smooth/ 90.62% (899/992) 82.14% (23/28) 85.52% (685/801)
75 111k ((FT_UInt64)val * FT TRIG SCALE + 0x40000000UL) >> 32);
truetype/ 95.29% (12299/12907) 99.63% (269/270) 89.28% (7409/8299)
typel/ 93.10% (4154/4462) 93.94% (62/66) 90.94% (2811/3091) 46 | 11Tk
typed2/ 95.79% (1662/1735) 90.62% (29/32) 94.50% (1099/1163) 77 111k return s < @ 7 -val : val;
winfonts/ 96.16% (826/859) 100.00% (13/13) 94.33% (632/670) 78 111k }
TOTALS 90.12% (74819/83022) 91.10% (1463/1606) 85.71% (47394/55293)

Fuzzing in the Wild: Fuzzing Introspection

Open Source Project Overview Function Database Target Oracle Indexing status API Fuzz Introspector 0SS-Fuzz About
Fuzzing Introspection

Fuzzing Introspection of 0SS-Fuzz projects

This page shows stats and data on open source fuzzing of the projects integrated into 0SS-Fuzz. The
analysis is generated by Fuzz Introspector, which is our tool for analysing the quality of fuzzing for an
open source project. The goal is to make the status transparent and useful for developers and
researchers to identify if the code they use is properly analysed.

Projects overview Search database

Database overview

0SS-Fuzz is currently continuously fuzzing a total of 1316 open source projects. The database on this page shows details about a subset of these.
The projects here are analyzed by code coverage analysis and Fuzz Introspector tool, and we only show data where there is a successful build of
either of these.
The data indexed on this site comprises

Projects analyzed (out of 1316 total) Fuzzers Functions C projects C++ projects Python projects Java projects Go projects Rust projects

Total

Covered ; pe Cti O n

Fuzzing in the

80M

Open Source Project Overview Function Database Targe’
Fuzzing Introspection

60M

Fuzzing Introspectic

This page shows stats and data on open sourc
analysis is generated by Fuzz Introspector, whi
open source project. The goal is to make tH
researchers to identify if the

ST 40M

Lines

Databas

0SS-Fuzz is currently continuously fuzzing a total of 1316 open sourc| 2 0 M
The projects here are analyzed by code coverage analysis and Fuzz

eith

The data indexe

Projects analyzed (out of 1316 total) Fuzzers Functions C projects 0

h

€coc Inc
¥20c uef
¥coc InC
S¢0¢ uer
S¢0c¢ InC

Date

Lines of code

How Can LLM Help?

A 4

Input Mutation Engine

T Seed Input }—M

Generated
Inputs

H

Fuzzing | ‘ | ‘
Harness Program

Outcome
(Failure/Coverage)

]

Tlnstrumentation }

How Can LLM Help?

* LLM for
* Capture more vulnerability patterns than traditional sanitizers
* E.g., Path Traversal, Reading from external logs, etc.

* LLM for

* Capture more library usage pattern
* E.g., For libpng, simulate browser usage, PDF reader usage, etc.

* LLM for
e Similar to unit test generation, but can accept more types of feedback
* E.g., Looking at uncovered lines, mutate input towards those lines

How Effective Are They? Exploring Large Language Model Based
Fuzz Driver Generation

Cen Zhang Yaowen Zheng’ Minggqiang Bai
Nanyang Technological University Nanyang Technological University IIE, CAS; Sch of Cyber Security, UCAS
Singapore Singapore Beijing, China
Yeting Li Wei Ma Xiaofei Xie
IIE, CAS; Sch of Cyber Security, UCAS ~ Nanyang Technological University Singapore Management University
Beijing, China Singapore Singapore
Yuekang Li Limin Sun Yang Liu

The University of New South Wales IIE, CAS; Sch of Cyber Security, UCAS =~ Nanyang Technological University
Sydney, Australia Beijing, China Singapore

How Effective Are They? Exploring Large Language Model Based

Cen Z Prompt Strategy Design Generation Prompt Template

Nanyang Technol{ Design I - [Query With Different Types of API Info] @ Task description //

Legend: [| Basic API info only Contain extended API info [Content] Target API specific content in prompt template

Generation Prompt Example

The following is a fuzz driver written in C language, complete

Singa] - Basic Info: Precisely specified & generally accessible, the implementation. Output the continued code in reply only.

e.g., header file and API declaration

Yetin| - Extended Info: Not guaranteed in quality and avail- @ [Header file inclusion] #include "bpf/Tibbpf.h"

IIE, CAS; Sch of Cylj ability, e.g., APT documentation and usage snippets

Beijing,| Design II- [Query Repeatedly] // @ gxamp1es of API usage fzom bpf—'loader.c
. // void test_bpf(const char *bpf_file) {
Vinelic 1 2 K - Repeat whole query process K ® [Example code snippets 7/
uekal XX # [times for K independent results which shows API usage] Thi . .
The University of T l Tl Suffix "K" in name ;; obj ; bpf_open_mem(_buffer, _size, NULL);
Sydney, 4 Design III - [Query Iteratively] o
— - Non-Iterative: one generation - /* @brief it creates a bpf_object by reading the BPF objects
Tll query & O * @param buf pointer to the buffer containing BPF ... */
Tl Tl T l - Iterative: one generation qQuery @) [ApT declaration] extern bpf* bpf_open_mem(char *buf, int sz, struct opts *opts);
1 2y ~ IX+1v with up to X fix queries

Acronym Prompts (Generation + Fix) |EX|IT (@ Task description 1/

BACTX-K D+@
DOCTX-K O+2+@
UGCTX-K O+2+d
BAIITERK | [D+@ |4+ @ |

NAIVE-K
Fix Prompt Template

@ [Code of error fuzz driver]

2o S I N N - G D 8
S| X | X | X | X

EX—use extended API info; IT—iterative query & fix @ Task description

the following function fuzzes bpf_open_mem

int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {

Fix Prompt Example

. obj = bpf_open_mem(Data, Size, NULL);

[One sentence error summary] Th€ above C code can be built successfully but will crash imme-
diately during execution(ASAN-assertion failure)

Error line: “obj = bpf_open_mem(Data, Size, NULL);"

[Exrror line code] Crash stack and nearby code:
oF ® [Error details] #3 0x5f7744 in bpf_open_mem /src/bpf/libbpf.c:256:28
ALL-ITER-K D+2+3 + or N4 [Other supplemental info]
or @ +® 256 assert(buf != NULL && sz != 0);
O+H+®

Based on the above information, fix the code.

Figure 2: Prompt Strategies Overview. Kis 1 or 40 in our evaluation and X is 5. The examples are simplified for demonstration purpose. In the fix
prompt example, the driver error is caused by missing check of Size > 0 before calling the API, and the nearby code of #3 stack frame hints the error.

How Effective Are They? Exploring Large Language Model Based

:II‘1‘1 nv:‘l’\l‘ pn“nvol':n“

Legend: [Basic API info only Contain extended API info [Content] Target API specific content in prompt template

Prompt Strategy Design Generation Prompt Template
Nan| DesignI- [Query With Different Types of API Info]
- Basic Info: Precisely specified & ge: *

Generation Prompt Example

(@ Task description // The following is a fuzz driver written in C language, complete
o e : I : o o 1 1

e.g., header file and API declaration
- Extended Info: Not guaranteed in q
ability, e.g., API documentation and u

Design IT - [Query Repeatedly]

S SS - Failure on Common Practices,
BT S <1% (93)
Design ITI - [Query Iteratively]

- Non-Iterati
query

fod - bestd Sibuprox g

Acronym | Prompts (Generati

The

NAIVE-K
BACTX-K D+®@ Gl - Corrupted Code
DOCTX-K D+2+@
UGCTX-K D+@+0
BA-ITER-K +[]
O

or

ALL-ITER-K =~ D+2+3 +
D+@+® G2 - Language Basics
EX—use extended API info; IT—itei o .

Violation

79%
(41,729)

Figure 2: Prompt Strate

prompt example, the driver er:

(10,037)
G3 - Non-Existing Identifier

(11,095)

S4 - Improper Resource Cleaning, 1% (464)
S3 - Inexact Ctrl-Flow Deps

S2 - Misinitialized Func Args

S1 - Incorrect Input
Arrangement, < 1% (291)

G4 - Type Error,
19% (10,108)

Grammatical Error

Semantic Error

How Effective Are They? Exploring Large Language Model Based

Cuinrr Neitvinv i nnavatinm

Legend: [Basic API info only Contain extended API info [Content] Target API specific content in prompt template
Prompt Strategy Design Generation Prompt Template Generation Prompt Example
Nan| DesignI- [Query With Different Types of API Info] (@ Task description // The following is a fuzz driver written in C language, complete
- Basic Info: Prec* - : EE— : = : SE— = =

e.g., header file a|
- Extended Info:

ability, e.g., API S5 - Failure on Common Practices,
Design IT - [Qu

S4 - Improper Resource Cleaning, 1% (464)
IEC . <1% (93) T B we ommoem

2 2
15 15
1 1
0.5 0.5
0 u AFL++ cov ratio, OSS-Fuzz/gpt-4 AFL++ cov ratio, OSS-Fuzz/wizardcoder 0 u libfuzzer cov ratio, OSS-Fuzz/gpt-4 libfuzzer cov ratio, OSS-Fuzz/wizardcoder

(a) Comparison in Average Coverage Ratio. Ratio = 0SS-Fuzz/LLM, ratio < 1 — 0SS-Fuzz’s driver has lower coverage.

10 " 2 I'
n | |
0 —r - —— - 0 LI B N B A . 1
[T 1 2
-10 .
m AFL++ crash diff, OSS-Fuzz - gpt-4 -4 u libfuzzer crash diff, OSS-Fuzz - gpt-4
20 AFL++ crash diff, OSS-Fuzz - wizardcoder -6 libfuzzer crash diff, OSS-Fuzz - wizardcoder

(b) Comparison in the Difference of Average Unique Crashes. Diff = 0SS-Fuzz - LLM, diff < 0 — OSS-Fuzz’s driver find less unique crashes.

Large Language Models Are Zero-Shot Fuzzers:
Fuzzing Deep-Learning Libraries via Large Language Models

Yinlin Deng Chungqiu Steven Xia Haoran Peng
University of Illinois University of Illinois University of Science and
Urbana-Champaign, USA Urbana-Champaign, USA Technology of China, China
yinlind2@illinois.edu chunqgiu2@illinois.edu hurrypeng@mail.ustc.edu.cn
Chenyuan Yang Lingming Zhang
University of Illinois University of Illinois
Urbana-Champaign, USA Urbana-Champaign, USA

cy54@illinois.edu lingming@illinois.edu

Large Language Models Are Zero-Shot Fuzzers:

Fuzzing Deep-Learning Libraries via Large Language Models

Yinlin Deng
University of Illinois
Urbana-Champaign, USA

Chungiu Steven Xia
University of Illinois
Urbana-Champaign, USA

Haoran Peng

University of Science and
Technology of China, China

[

[

t_;;;(x)

Seed Code Snippets

generate
seeds

3

Prompt text
> completion <
API Prompt

construct
prompt

Generative
LLM

DL Library /-, o N
API)

h ﬁ t_a,p.i-("

select

seed
—_—

— 3%

t_api()

Seed Bank

update

bank

t_api(y, dim=0)

compute

score \=
21 «— ?ﬁ

\VX Function ¢

Infilling LLM

apply
operator
Mutation genenate
Operators _ Update GHERCE
prob
Fitness

t_api(y, dim=0)

POTENTIAL
BUGS

A

Compare

[>'Resu1ts
CcPU

T execute

t_gai(x)

_ 4

&

— 3|
v
c

fuzzing outputs

Large Language Models Are Zero-Shot Fuzzers:

Fu

t_a}&kx)

Seed Code Snippets

generate
seeds

°
S
b
=1
o
SEl
£
4

-

POTENTIAL
BUGS

4% celoct *
A £o_roAllE seed t_api() -~ Campere -
4

] I
Task 1: Import |TensorFlow|2.10.0

Task 2: Generate input data

target library

F?[romptt Task 3: Call the API|tf.nn.conv2d(input, filters,strides,
npu
P padding,data_format="NHWC',dilations=None, name=None)
import tensorflow as tf target API Signature
tf. version_
OCOdex input = tf.variable(tf.random.normal([1, 10, 10, 1]))
UtPUt filter = tf.variable(tf.random.normal([3, 3, 1, 1]))

op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding="'VALID')

Figure 5: Example generation from the Codex model.

Large Language Models Are Zero-Shot Fuzzers:

Fu

Se

N7 gy Generative

DL

ig a.p‘i‘(x)

POTENTIAL
BUGS

- - A
y |
TensorFlow PyTorch
108000 —o—0 24000
Prom| —o-a—o— "0 ——0—0
Inpu 1e6000 - o
7 23500 _.’._.-—0--0
v “a / s adl
g 7 E »3080
2 P e = e P e = =y 2 /
Code S 84000 | / S / /
Outpl & / B e P = e el B o e i e Y
- 82000 / - /
/ 16000 { 7/
po— l == DeepRel Y | == DeepRel
F1 u =®= TitanFuzz =@®= TitanFuzz
g { Ll I T T Ll Ll 15500 { T 1 T 1 Ll
0 10 20 30 40 50 60 0 10 20 30 40 50 60
time (seconds) time (seconds)
Figure 7: Coverage trend against DeepREL

O google / oss-fuzz-gen Q Type (/] to search 8 ~ ++ O N1 £
<> Code () Issues 90 19 Pullrequests 65 L)) Discussions () Actions () Security |~ Insights

G oss-fuzz-gen Public ®Wwatch 16 ~ % Fork 201 - ¥¢ Star 1.3k~

¥ main ~ ¥ 149 Branches 1Tag Q Goto file t Add file ~ About

LLM powered fuzzing via OSS-Fuzz.
ﬁ myanvoos Automatically print cloud build details as a PR comment (#1162) @& X 2a165€9 - 2 weeks ago (1) 746 Commits
security ai fuzzing lim

9 .github Automatically print cloud build details as a PR comment (... 2 weeks ago
0 Readme

https://github.com/google/oss-fuzz-gen

https://github.com/google/oss-fuzz-gen
https://github.com/google/oss-fuzz-gen
https://github.com/google/oss-fuzz-gen
https://github.com/google/oss-fuzz-gen
https://github.com/google/oss-fuzz-gen
https://github.com/google/oss-fuzz-gen

= O google / oss-fuzz-gen Q Type (/] to search 8 - ++~ O 1 &
<> Code (9 Issues 90 19 Pullrequests 65) Discussions (») Actions () Security |~ Insights
Benchmark Status Build || Crash Coverage Line
rate rate coverage diff || [
Fork 201 - Y7 Star 1.3k -

output-lodepng-lodepng-encode Done |50.00 ||12.50 [20.65 23.67

output-lodepng-lodepng_encode32 file [Done |[87.50][37.50 |37.48 23.65

output-lodepng-lodepng_encode file |[Done Jl62.50 Jl62.50 |38.63 23.63 ;

output-lodepng-lodepng_encode24 file |[Done J25.00][25.00][0.00 2227 Y

output-libarchive-archive entry_acl text w |[Done |[75.00 J[0.00 23.60 22.13 ! powered fuzzing via OSS-Fuzz.

output-libarchive-archive entry_acl text ||Done 37.50 0.00 23.16 21.54

outnut-fribidi-fribidi log2vis IIDone 187.50 137.50 53.36 20.43 curity ai fuzzing lim

Overall, this framework manages to successfully leverage LLMs to generate valid fuzz targets (which generate
non-zero coverage increase) for 160 C/C++ projects. The maximum line coverage increase is 29% from the
existing human-written targets.

Note that these reports are not public as they may contain undisclosed vulnerabilities.

|E JETEE

— i o= T = 1
output-hiredis-rediscommandargy Done ||87.50 75.00 5.79 11.68

https://github.com/google/oss-fuzz-gen

https://github.com/google/oss-fuzz-gen
https://github.com/google/oss-fuzz-gen
https://github.com/google/oss-fuzz-gen
https://github.com/google/oss-fuzz-gen
https://github.com/google/oss-fuzz-gen
https://github.com/google/oss-fuzz-gen

