
Machine Programming
Lecture 16 – LLM for Software Testing: Static Analysis



Logistics – Week 9

• Assignment 3: Coding LLM Agents
• https://github.com/machine-programming/assignment-3
• Fully functional web-app agent. Due: Oct 23 (Thu)

• Forming groups for your final projects!
• Form a group of 2-3 before This Thursday (Oct 19 Oct 23)

https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3


Module 3: Overview
Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?

Synthesis Strategy
- How do we find such a program?

1. Syntax/Semantics/Functional correctness
2. Comprehensive test coverage
3. Has no security flaw
4. Optimized for runtime speed
5. …

Programming with Large Language Models
- Next token prediction, prompting, controlled decoding
- Iterative refinement, agentic frameworks and tool use
- Pre-training, fine-tuning, reinforcement learning

Enumeration: Bottom-up and Top-Down

Fixed

General Purpose Programming Language
Python / Java / C / Rust / …

Domain Specific Languages
SQL / LEAN / ROCQ / DATALOG / PDDL / …



Software Analysis
Testing and Dynamic Analysis



Forms of Software Analysis

Static Analysis Dynamic Analysis

Examine code without concrete execution Observes program behavior while executing

- Taint analysis
- Reachability analysis
- Abstract interpretation
- Symbolic execution
- …

- Unit testing
- Fuzzing
- Property-based testing
- Penetration testing
- …



Dynamic Testing

Unit Testing

Human-written tests
in the form of concrete

input-output

assert f(2) == 4
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Dynamic Testing

Unit Testing

Human-written tests
in the form of concrete

input-output

assert f(2) == 4

Fuzzing

Randomly
generating
test inputs

for i in 0..10^4:
  x = gen_input()
  f(x)

Property-based testing

Randomly generating
test inputs, but with

properties checking outputs

for i in 0..10^4:
  x = gen_input()
  y = f(x)
  assert property(x,y)

Penetration testing

Crafting adversarial inputs
to trigger vulnerabilities rather 

than getting outputs

try:
  f(very_bad_input)
  assert false
except:
  assert no_bad_behavior



Software Testing: Impossible Triangle

Soundness

Completeness Termination
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Real Bug False Bug

Reported
(positive)

True Pos 
(TP)

False Pos
(FP)

Not Reported
(negative)

False Neg 
(FN)

True Neg
(TN)

#FN = 0

#FP = 0



Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Dynamic Analysis:
Unit Testing 
- (assuming tests are correct)
Fuzzing 
- (assuming harness is real)

The unit test cases might not be 
comprehensive enough.



def calculate_interest(balance: float, months: int) -> float:
rate = 0.02 # 2% per month
if months > 12:
rate = 0.03 # higher rate for long-term deposits

return balance * rate / months

Program – Line coverage: 5/5 (100%)

def test_short_term_interest():
  assert calculate_interest(1000, 6) == pytest.approx(3.33)

Test 1

def test_long_term_interest():
  assert calculate_interest(1000, 24) == pytest.approx(1000 * 0.03 / 24)

Test 2

def test_zero_months_divide_by_zero(): # covers implicit error path
assert calculate_interest(1000, 0) == 0

Test 3 (Assume that this test case is not there)
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Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Static Analysis:
Taint Analysis 
- (assuming correct specs)
Abstract Interpretation 
- (assuming correct domains)

May report an alarm for developer 
confirmation, and that is rejected



Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Formal Verification:
Halting Problem
- Is the program terminating?
Functional Correctness Verification
- (assuming specs are correct)

It may be impossible for a 
verifier to terminate



Software Analysis
Static Analysis



Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Static Analysis:
Taint Analysis 
- (assuming correct specs)
Abstract Interpretation 
- (assuming correct domains)

May report an alarm for developer 
confirmation, and that is rejected



Control-Flow Graphs

• Premise:
• An abstract representation of imperative programs
• Illustrating how “control” (execution) flows through the code

• A graph representation
• Summarizes the flow of control in all possible runs of the program

• Goal:
• Help all sorts of static analysis by providing the birds eye view



Control-Flow Graphs

int x = 5;
int y = 1;
while (x != 1) {
  y = x * y;
  x = x - 1;
}

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false
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Control-Flow Graphs: Traces

int x = 5;
int y = 1;
while (x != 1) {
  y = x * y;
  x = x - 1;
}

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2)

bb1

bb2

Entry à bb1 à cond
  à bb2 à cond // (x == 5)
  à bb2 à cond // (x == 4)
  à bb2 à cond // (x == 3)
  à bb2 à cond // (x == 2)
  à bb2 à cond // (x == 1)
  à exit

cond

Execution Trace



Dataflow Analysis

• Building on control-flow analysis
• Abstracts away control-flow conditions

• Considers all paths possible in actual runs (sound)
• Including paths that are never realizable (incomplete)



Abstracting Control-Flow Graphs
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Abstracting Control-Flow Graphs

int x = 5;
int y = 1;
while (x != 1) {
  y = x * y;
  x = x - 1;
}

Entry

x = 5

y = 1

x != 1 *

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2)

bb1

bb2

cond

Potential Traces

Entry à bb1 à cond à bb2 à cond à exit

Entry à bb1 à cond à exit

Non-deterministic



Modern Dataflow Analyses

Interval Analysis
- Check memory safety
      (integer overflows, buffer overruns, …)

Taint Analysis
- Check information flow
      (Sensitive data leak, code injection, …)

Type-State Analysis
- Temporal safety properties
      (APIs of protocols, libraries, …)

Concurrency Analysis
- Concurrency safety properties
      (dataraces, deadlocks, …)



Reaching Definitions Analysis

• Goal:
• Determine whether a program 

point containing a piece of data 
(definition of a variable) can flow to 
another program point

• Reduced to…
• Path finding problem in a graph

Entry

x = 5
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x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2)
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Reaching Definitions Analysis

• Goal:
• Determine whether a program 

point containing a piece of data 
(definition of a variable) can flow to 
another program point

• Reduced to…
• Path finding problem in a graph

• Example:
• Does information defined in P1 

flow to P2?

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2)

P1

P2



Reaching Definitions Analysis: Quiz

• Does information defined in P1 
flow to P2?
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exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2) P1
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How to Compute Reaching Definitions?

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

• For each node n, we denote
• IN(𝑛) =nodes which can reach 𝑛
• OUT(𝑛) =nodes which can go beyond 𝑛

• Dataflow analysis computes IN(𝑛) 
and OUT(𝑛)	for each node
• Chaotic Iteration:
• Starting from them being empty
• Repeat operations to populate them
• Until the two sets stop changing



How to Compute Reaching Definitions?

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

• For each node n, we denote
• IN(𝑛) =nodes which can reach 𝑛
• OUT(𝑛) =nodes which can go beyond 𝑛

• Dataflow analysis computes IN(𝑛) 
and OUT(𝑛)	for each node
• Chaotic Iteration:
• Starting from them being empty
• Repeat operations to populate them
• Until the two sets stop changing

(𝑥, 5)

(𝑦, 1)

(𝑦, 𝑥 ∗ 𝑦)

(𝑥, 𝑥 − 1)



How to Compute? Flow-in

IN(𝑛) 	= 	/
!∈#$%&%'%(()$((+)

OUT(𝑚)

n1 n2 n3

n

IN 𝑛 = OUT 𝑛- ∪ OUT 𝑛. ∪ OUT(𝑛/)



How to Compute? Flow-out

OUT 𝑛 = IN 𝑛 − KILL 𝑛 ∪ GEN(𝑛) n

IN 𝑛

OUT 𝑛

n: y = x * y
GEN 𝑛 = {(𝑦, 𝑛)}

KILL 𝑛 = {(𝑦, 5)}

n: x != 1
GEN 𝑛 = {}

KILL 𝑛 = {}



Chaotic Iteration for Dataflow Analysis

• for (each node n in control-flow graph):
• IN(𝑛) 	= 	 {}
• OUT(𝑛) 	= 	 {}
• GEN(𝑛) 	= 	 {(𝑣, 𝑛)}	if 𝑛 is an assignment else {}

• repeat:
• for (each node n):

• IN(𝑛) 	=	flow-in(𝑛)
• OUT(𝑛) 	=	flow-out(𝑛)

• until all the IN(𝑛)	and OUT(𝑛)	stops changing

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false
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Chaotic Iteration for Dataflow Analysis

• for (each node n in control-flow graph):
• IN(𝑛) 	= 	 {}
• OUT(𝑛) 	= 	 {}
• GEN(𝑛) 	= 	 {(𝑣, 𝑛)}	if 𝑛 is an assignment else {}

• repeat:
• for (each node n):

• IN(𝑛) 	=	flow-in(𝑛)
• OUT(𝑛) 	=	flow-out(𝑛)

• until all the IN(𝑛)	and OUT(𝑛)	stops changing

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Question: Does it always terminate?

Answer: Yes!



More Complicated Dataflow Analysis

• Question:
• With Dataflow analysis, can we tell 

whether there could be a divide-by-
zero vulnerability?

Entry

x = 3

y = 10

y > 0

y = y - 1 return x / y

true false
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More Complicated Dataflow Analysis

• Question:
• With Dataflow analysis, can we tell 

whether there could be a divide-by-
zero vulnerability?

• Answer:
• We can tag the nodes with additional 

information such as abstract domains

Entry

x = 3

y = 10

y > 0

y = y - 1 return x / y

true false

Abstract Domain: {+, 0, −}

(𝑥, {+})

(𝑦, {+})

(𝑦, {+, 0})

Question: At the end of analysis, for this node, 
can 𝑦 be tagged with abstract domain {+, 0, −}?



More Complicated Dataflow Analysis

• Question:
• With Dataflow analysis, can we tell 

whether there could be a divide-by-
zero vulnerability?

• Answer:
• We can tag the nodes with additional 

information such as abstract domains

Entry

x = 3

y = 10

y > 0

y = y - 1 return x / y

true false

Abstract Domain: {+, 0, −}

(𝑥, {+})

(𝑦, {+})

(𝑦, {+, 0})
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Arithmetic of Abstract Domains
+ + + → {+}
+ − + → {+, 0, −} Specialization: + − 1 → {+, 0}
+ ∗ + → {+}

+ + 0 → {+}
+ − 0 → {+}
+ ∗ 0 → {0}

+ + − → {+, 0, −}
+ − − → {+}
+ ∗ − → {−}

Specialization: + + (−1) → {+, 0}



More Complicated Dataflow Analysis

• Question:
• With Dataflow analysis, can we tell 

whether there could be a divide-by-
zero vulnerability?

• Answer:
• We can tag the nodes with additional 

information such as abstract domains

Entry

x = 3

y = 10

y > 0

y = y - 1 return x / y

true false

Abstract Domain: {+, 0, −}

(𝑥, {+})

(𝑦, {+})

(𝑦, {+, 0})

Since y is tagged with abstract domain 0, there IS 
a potential divide-by-zero vulnerability!

(𝑦, {+, 0})



More Complicated Dataflow Analysis: Sensitivity

• Question:
• With Dataflow analysis, can we tell 

whether there could be a divide-by-
zero vulnerability?

• Answer:
• We can tag the nodes with additional 

information such as abstract domains

Entry
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y = y - 1 return x / y

true false

Abstract Domain: {+, 0, −}
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x = x - 1
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More Complicated Dataflow Analysis: Sensitivity

• Question:
• With Dataflow analysis, can we tell 

whether there could be a divide-by-
zero vulnerability?

• Answer:
• We can tag the nodes with additional 

information such as abstract domains

Entry

x = 3

y = 10

x > 0

y = y - 1 return x / y

true false

Abstract Domain: {+, 0, −}

(𝑥, {+})

(𝑦, {+})

(𝑦, {+, 0})

(𝑦, {+, 0})

x = x - 1(𝑥, {+, 0})

(𝑥, {+, 0})

Question: The analysis suggests that there is a 
potential div-by-zero. But is it real? NO

Dataflow Analysis with {+, 0, −}	abstract domains 
reported a false positive div-by-zero alarms.



Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Static Analysis:
Taint Analysis 
- (assuming correct specs)
Abstract Interpretation 
- (assuming correct domains)

May report an alarm for developer 
confirmation, and that is rejected



Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Static Analysis:
Taint Analysis 
- (assuming correct specs)
Abstract Interpretation 
- (assuming correct domains)

Dataflow Analysis & Abstract Domain generalizes to 
entire space of input, but loses precision



Dataflow Analysis in Real Life: Taint Analysis



Dataflow Analysis in Real Life: Taint Analysis

🚩 Source

class CreateBucketController … {
 public void handle(
  HttpRequest req, HttpResponse res
 ) throws Exception {
  InputStream inputStream = 
   new ByteBufInput…(req.getBody())

🎯 Sink

CreateBucketController.java

CreateBucketController.java

🏭 Factory LocalS3.java

XMLInputFactory input = 
  new WstxInputFactory(); …
XmlMapper xmlMapper = 
  new XmlMapper(
    new XmlFactory(input, …));
serviceFactory.register(
  XmlMapper.class, 
  () -> xmlMapper);

(dataflow path of 6 nodes)

xmlMapper = serviceFactory
  .getInstance(XmlMapper.class); ...
CreateBucketConf conf = 
  xmlMapper.readValue(
    inputStream, CreateBucketConf.class);
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Dataflow Analysis in Real Life: Taint Analysis

• Goal:
• See how a program point with “tainted 

information” may flow through the code
• How is it “Manifested” into a real vulnerability

🚩 Source

class CreateBucketController … {
 public void handle(
  HttpRequest req, HttpResponse res
 ) throws Exception {
  InputStream inputStream = 
   new ByteBufInput…(req.getBody())

🎯 Sink

CreateBucketController.java

CreateBucketController.java

🏭 Factory LocalS3.java

XMLInputFactory input = 
  new WstxInputFactory(); …
XmlMapper xmlMapper = 
  new XmlMapper(
    new XmlFactory(input, …));
serviceFactory.register(
  XmlMapper.class, 
  () -> xmlMapper);

(dataflow path of 6 nodes)

xmlMapper = serviceFactory
  .getInstance(XmlMapper.class); ...
CreateBucketConf conf = 
  xmlMapper.readValue(
    inputStream, CreateBucketConf.class);
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CVE-2025-27136



Dataflow Analysis in Real Life: Taint Analysis

• Goal:
• See how a program point with “tainted 

information” may flow through the code
• How is it “Manifested” into a real vulnerability

• Taint Specification:
• Source: the HttpRequest parameter to a 

handle function of a Java Servlet
• Sink: the readValue function of XmlMapper

🚩 Source

class CreateBucketController … {
 public void handle(
  HttpRequest req, HttpResponse res
 ) throws Exception {
  InputStream inputStream = 
   new ByteBufInput…(req.getBody())

🎯 Sink

CreateBucketController.java

CreateBucketController.java

🏭 Factory LocalS3.java

XMLInputFactory input = 
  new WstxInputFactory(); …
XmlMapper xmlMapper = 
  new XmlMapper(
    new XmlFactory(input, …));
serviceFactory.register(
  XmlMapper.class, 
  () -> xmlMapper);

(dataflow path of 6 nodes)

xmlMapper = serviceFactory
  .getInstance(XmlMapper.class); ...
CreateBucketConf conf = 
  xmlMapper.readValue(
    inputStream, CreateBucketConf.class);
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Dataflow Analysis in Real Life: Taint Analysis
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Dataflow Analysis in Real Life: Taint Analysis

Taint Specification:
Source: the value parameter to the isValue function of a CronValidator
Sink: the buildConstraintViolationWithTemplate function of ConstraintValidatorContext



Dataflow Analysis in Real Life: Taint Analysis

• Where are those taint specifications coming from?
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Dataflow Analysis in Real Life: Taint Analysis

• Where are those taint specifications coming from?
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Dataflow Analysis in Real Life: CodeQL

• Question:
• When we have a programming language for static analysis…
• Can we Synthesize Program in this language?











Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Static Analysis:
Taint Analysis 
- (assuming correct specs)
Abstract Interpretation 
- (assuming correct domains)

Dataflow Analysis & Abstract Domain generalizes to 
entire space of input, but loses precision

Realistically, there is no “completely 
correct” specifications











Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time



Logistics – Week 9

• Assignment 3: Coding LLM Agents
• https://github.com/machine-programming/assignment-3 
• Fully functional web-app agent. Due: Oct 23 (Thu)

• Forming groups for your final projects!
• Form a group of 2-3 before This Thursday (Oct 19 Oct 23)
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