
Machine Programming
Lecture 16 – LLM for Software Testing: Static Analysis

Logistics – Week 9

• Assignment 3: Coding LLM Agents
• https://github.com/machine-programming/assignment-3
• Fully functional web-app agent. Due: Oct 23 (Thu)

• Forming groups for your final projects!
• Form a group of 2-3 before This Thursday (Oct 19 Oct 23)

https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3

Module 3: Overview
Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?

Synthesis Strategy
- How do we find such a program?

1. Syntax/Semantics/Functional correctness
2. Comprehensive test coverage
3. Has no security flaw
4. Optimized for runtime speed
5. …

Programming with Large Language Models
- Next token prediction, prompting, controlled decoding
- Iterative refinement, agentic frameworks and tool use
- Pre-training, fine-tuning, reinforcement learning

Enumeration: Bottom-up and Top-Down

Fixed

General Purpose Programming Language
Python / Java / C / Rust / …

Domain Specific Languages
SQL / LEAN / ROCQ / DATALOG / PDDL / …

Software Analysis
Testing and Dynamic Analysis

Forms of Software Analysis

Static Analysis Dynamic Analysis

Examine code without concrete execution Observes program behavior while executing

- Taint analysis
- Reachability analysis
- Abstract interpretation
- Symbolic execution
- …

- Unit testing
- Fuzzing
- Property-based testing
- Penetration testing
- …

Dynamic Testing

Unit Testing

Human-written tests
in the form of concrete

input-output

assert f(2) == 4

Dynamic Testing

Unit Testing

Human-written tests
in the form of concrete

input-output

assert f(2) == 4

Fuzzing

Randomly
generating
test inputs

for i in 0..10^4:
 x = gen_input()
 f(x)

Dynamic Testing

Unit Testing

Human-written tests
in the form of concrete

input-output

assert f(2) == 4

Fuzzing

Randomly
generating
test inputs

for i in 0..10^4:
 x = gen_input()
 f(x)

Property-based testing

Randomly generating
test inputs, but with

properties checking outputs

for i in 0..10^4:
 x = gen_input()
 y = f(x)
 assert property(x,y)

Dynamic Testing

Unit Testing

Human-written tests
in the form of concrete

input-output

assert f(2) == 4

Fuzzing

Randomly
generating
test inputs

for i in 0..10^4:
 x = gen_input()
 f(x)

Property-based testing

Randomly generating
test inputs, but with

properties checking outputs

for i in 0..10^4:
 x = gen_input()
 y = f(x)
 assert property(x,y)

Penetration testing

Crafting adversarial inputs
to trigger vulnerabilities rather

than getting outputs

try:
 f(very_bad_input)
 assert false
except:
 assert no_bad_behavior

Software Testing: Impossible Triangle

Soundness

Completeness Termination

Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Real Bug False Bug

Reported
(positive)

True Pos
(TP)

False Pos
(FP)

Not Reported
(negative)

False Neg
(FN)

True Neg
(TN)

Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Real Bug False Bug

Reported
(positive)

True Pos
(TP)

False Pos
(FP)

Not Reported
(negative)

False Neg
(FN)

True Neg
(TN)

#FN = 0

#FP = 0

Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Dynamic Analysis:
Unit Testing
- (assuming tests are correct)
Fuzzing
- (assuming harness is real)

The unit test cases might not be
comprehensive enough.

def calculate_interest(balance: float, months: int) -> float:
rate = 0.02 # 2% per month
if months > 12:
rate = 0.03 # higher rate for long-term deposits

return balance * rate / months

Program – Line coverage: 5/5 (100%)

def test_short_term_interest():
 assert calculate_interest(1000, 6) == pytest.approx(3.33)

Test 1

def test_long_term_interest():
 assert calculate_interest(1000, 24) == pytest.approx(1000 * 0.03 / 24)

Test 2

def test_zero_months_divide_by_zero(): # covers implicit error path
assert calculate_interest(1000, 0) == 0

Test 3 (Assume that this test case is not there)

Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Static Analysis:
Taint Analysis
- (assuming correct specs)
Abstract Interpretation
- (assuming correct domains)

May report an alarm for developer
confirmation, and that is rejected

Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Formal Verification:
Halting Problem
- Is the program terminating?
Functional Correctness Verification
- (assuming specs are correct)

It may be impossible for a
verifier to terminate

Software Analysis
Static Analysis

Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Static Analysis:
Taint Analysis
- (assuming correct specs)
Abstract Interpretation
- (assuming correct domains)

May report an alarm for developer
confirmation, and that is rejected

Control-Flow Graphs

• Premise:
• An abstract representation of imperative programs
• Illustrating how “control” (execution) flows through the code

• A graph representation
• Summarizes the flow of control in all possible runs of the program

• Goal:
• Help all sorts of static analysis by providing the birds eye view

Control-Flow Graphs

int x = 5;
int y = 1;
while (x != 1) {
 y = x * y;
 x = x - 1;
}

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Control-Flow Graphs

int x = 5;
int y = 1;
while (x != 1) {
 y = x * y;
 x = x - 1;
}

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1

Basic Block 2

Control-Flow Graphs

int x = 5;
int y = 1;
while (x != 1) {
 y = x * y;
 x = x - 1;
}

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2)

bb1

bb2

Control-Flow Graphs: Traces

int x = 5;
int y = 1;
while (x != 1) {
 y = x * y;
 x = x - 1;
}

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2)

bb1

bb2

Entry à bb1 à cond
 à bb2 à cond // (x == 5)
 à bb2 à cond // (x == 4)
 à bb2 à cond // (x == 3)
 à bb2 à cond // (x == 2)
 à bb2 à cond // (x == 1)
 à exit

cond

Execution Trace

Dataflow Analysis

• Building on control-flow analysis
• Abstracts away control-flow conditions

• Considers all paths possible in actual runs (sound)
• Including paths that are never realizable (incomplete)

Abstracting Control-Flow Graphs

int x = 5;
int y = 1;
while (x != 1) {
 y = x * y;
 x = x - 1;
}

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2)

bb1

bb2

cond

Abstracting Control-Flow Graphs

int x = 5;
int y = 1;
while (x != 1) {
 y = x * y;
 x = x - 1;
}

Entry

x = 5

y = 1

x != 1 *

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2)

bb1

bb2

cond

Abstracting Control-Flow Graphs

int x = 5;
int y = 1;
while (x != 1) {
 y = x * y;
 x = x - 1;
}

Entry

x = 5

y = 1

x != 1 *

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2)

bb1

bb2

cond

Potential Traces

Entry à bb1 à cond à bb2 à cond à exit

Entry à bb1 à cond à exit

Non-deterministic

Modern Dataflow Analyses

Interval Analysis
- Check memory safety
 (integer overflows, buffer overruns, …)

Taint Analysis
- Check information flow
 (Sensitive data leak, code injection, …)

Type-State Analysis
- Temporal safety properties
 (APIs of protocols, libraries, …)

Concurrency Analysis
- Concurrency safety properties
 (dataraces, deadlocks, …)

Reaching Definitions Analysis

• Goal:
• Determine whether a program

point containing a piece of data
(definition of a variable) can flow to
another program point

• Reduced to…
• Path finding problem in a graph

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2)

Reaching Definitions Analysis

• Goal:
• Determine whether a program

point containing a piece of data
(definition of a variable) can flow to
another program point

• Reduced to…
• Path finding problem in a graph

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2)

P1

P2

Reaching Definitions Analysis

• Goal:
• Determine whether a program

point containing a piece of data
(definition of a variable) can flow to
another program point

• Reduced to…
• Path finding problem in a graph

• Example:
• Does information defined in P1

flow to P2?

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2)

P1

P2

Reaching Definitions Analysis: Quiz

• Does information defined in P1
flow to P2?

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2) P1

P2

Reaching Definitions Analysis: Quiz

• Does information defined in P1
flow to P2?

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2) P1

P2

YES

Reaching Definitions Analysis: Quiz

• Does information defined in P1
flow to P2?

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2)

P1

P2

Reaching Definitions Analysis: Quiz

• Does information defined in P1
flow to P2?

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2)

P1

P2

NO

Reaching Definitions Analysis: Quiz

• Does information defined in P1
flow to P2?

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2) P1

P2

Reaching Definitions Analysis: Quiz

• Does information defined in P1
flow to P2?

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Basic Block 1 (bb1)

Basic Block 2 (bb2) P1

P2

YES

How to Compute Reaching Definitions?

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

• For each node n, we denote
• IN(𝑛) =nodes which can reach 𝑛
• OUT(𝑛) =nodes which can go beyond 𝑛

• Dataflow analysis computes IN(𝑛)
and OUT(𝑛)	for each node
• Chaotic Iteration:
• Starting from them being empty
• Repeat operations to populate them
• Until the two sets stop changing

How to Compute Reaching Definitions?

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

• For each node n, we denote
• IN(𝑛) =nodes which can reach 𝑛
• OUT(𝑛) =nodes which can go beyond 𝑛

• Dataflow analysis computes IN(𝑛)
and OUT(𝑛)	for each node
• Chaotic Iteration:
• Starting from them being empty
• Repeat operations to populate them
• Until the two sets stop changing

(𝑥, 5)

(𝑦, 1)

(𝑦, 𝑥 ∗ 𝑦)

(𝑥, 𝑥 − 1)

How to Compute? Flow-in

IN(𝑛) 	= 	/
!∈#$%&%'%(()$((+)

OUT(𝑚)

n1 n2 n3

n

IN 𝑛 = OUT 𝑛- ∪ OUT 𝑛. ∪ OUT(𝑛/)

How to Compute? Flow-out

OUT 𝑛 = IN 𝑛 − KILL 𝑛 ∪ GEN(𝑛) n

IN 𝑛

OUT 𝑛

n: y = x * y
GEN 𝑛 = {(𝑦, 𝑛)}

KILL 𝑛 = {(𝑦, 5)}

n: x != 1
GEN 𝑛 = {}

KILL 𝑛 = {}

Chaotic Iteration for Dataflow Analysis

• for (each node n in control-flow graph):
• IN(𝑛) 	= 	 {}
• OUT(𝑛) 	= 	 {}
• GEN(𝑛) 	= 	 {(𝑣, 𝑛)}	if 𝑛 is an assignment else {}

• repeat:
• for (each node n):

• IN(𝑛) 	=	flow-in(𝑛)
• OUT(𝑛) 	=	flow-out(𝑛)

• until all the IN(𝑛)	and OUT(𝑛)	stops changing

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Chaotic Iteration for Dataflow Analysis

• for (each node n in control-flow graph):
• IN(𝑛) 	= 	 {}
• OUT(𝑛) 	= 	 {}
• GEN(𝑛) 	= 	 {(𝑣, 𝑛)}	if 𝑛 is an assignment else {}

• repeat:
• for (each node n):

• IN(𝑛) 	=	flow-in(𝑛)
• OUT(𝑛) 	=	flow-out(𝑛)

• until all the IN(𝑛)	and OUT(𝑛)	stops changing

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Question: Does it always terminate?

Chaotic Iteration for Dataflow Analysis

• for (each node n in control-flow graph):
• IN(𝑛) 	= 	 {}
• OUT(𝑛) 	= 	 {}
• GEN(𝑛) 	= 	 {(𝑣, 𝑛)}	if 𝑛 is an assignment else {}

• repeat:
• for (each node n):

• IN(𝑛) 	=	flow-in(𝑛)
• OUT(𝑛) 	=	flow-out(𝑛)

• until all the IN(𝑛)	and OUT(𝑛)	stops changing

Entry

x = 5

y = 1

x != 1

y = x * y

x = x - 1

exit

true false

Question: Does it always terminate?

Answer: Yes!

More Complicated Dataflow Analysis

• Question:
• With Dataflow analysis, can we tell

whether there could be a divide-by-
zero vulnerability?

Entry

x = 3

y = 10

y > 0

y = y - 1 return x / y

true false

More Complicated Dataflow Analysis

• Question:
• With Dataflow analysis, can we tell

whether there could be a divide-by-
zero vulnerability?

• Answer:
• We can tag the nodes with additional

information such as abstract domains

Entry

x = 3

y = 10

y > 0

y = y - 1 return x / y

true false

More Complicated Dataflow Analysis

• Question:
• With Dataflow analysis, can we tell

whether there could be a divide-by-
zero vulnerability?

• Answer:
• We can tag the nodes with additional

information such as abstract domains

Entry

x = 3

y = 10

y > 0

y = y - 1 return x / y

true false

Abstract Domain: {+, 0, −}

(𝑥, {+})

(𝑦, {+})

(𝑦, {+, 0})

More Complicated Dataflow Analysis

• Question:
• With Dataflow analysis, can we tell

whether there could be a divide-by-
zero vulnerability?

• Answer:
• We can tag the nodes with additional

information such as abstract domains

Entry

x = 3

y = 10

y > 0

y = y - 1 return x / y

true false

Abstract Domain: {+, 0, −}

(𝑥, {+})

(𝑦, {+})

More Complicated Dataflow Analysis

• Question:
• With Dataflow analysis, can we tell

whether there could be a divide-by-
zero vulnerability?

• Answer:
• We can tag the nodes with additional

information such as abstract domains

Entry

x = 3

y = 10

y > 0

y = y - 1 return x / y

true false

Abstract Domain: {+, 0, −}

(𝑥, {+})

(𝑦, {+})

(𝑦, {+, 0})

Question: At the end of analysis, for this node,
can 𝑦 be tagged with abstract domain {+, 0, −}?

More Complicated Dataflow Analysis

• Question:
• With Dataflow analysis, can we tell

whether there could be a divide-by-
zero vulnerability?

• Answer:
• We can tag the nodes with additional

information such as abstract domains

Entry

x = 3

y = 10

y > 0

y = y - 1 return x / y

true false

Abstract Domain: {+, 0, −}

(𝑥, {+})

(𝑦, {+})

(𝑦, {+, 0})

(𝑦, {+, 0})

Arithmetic of Abstract Domains
+ + + → {+}
+ − + → {+, 0, −} Specialization: + − 1 → {+, 0}
+ ∗ + → {+}

+ + 0 → {+}
+ − 0 → {+}
+ ∗ 0 → {0}

+ + − → {+, 0, −}
+ − − → {+}
+ ∗ − → {−}

Specialization: + + (−1) → {+, 0}

More Complicated Dataflow Analysis

• Question:
• With Dataflow analysis, can we tell

whether there could be a divide-by-
zero vulnerability?

• Answer:
• We can tag the nodes with additional

information such as abstract domains

Entry

x = 3

y = 10

y > 0

y = y - 1 return x / y

true false

Abstract Domain: {+, 0, −}

(𝑥, {+})

(𝑦, {+})

(𝑦, {+, 0})

Since y is tagged with abstract domain 0, there IS
a potential divide-by-zero vulnerability!

(𝑦, {+, 0})

More Complicated Dataflow Analysis: Sensitivity

• Question:
• With Dataflow analysis, can we tell

whether there could be a divide-by-
zero vulnerability?

• Answer:
• We can tag the nodes with additional

information such as abstract domains

Entry

x = 3

y = 10

x > 0

y = y - 1 return x / y

true false

Abstract Domain: {+, 0, −}

(𝑥, {+})

(𝑦, {+})

(𝑦, {+, 0})

x = x - 1

More Complicated Dataflow Analysis: Sensitivity

• Question:
• With Dataflow analysis, can we tell

whether there could be a divide-by-
zero vulnerability?

• Answer:
• We can tag the nodes with additional

information such as abstract domains

Entry

x = 3

y = 10

x > 0

y = y - 1 return x / y

true false

Abstract Domain: {+, 0, −}

(𝑥, {+})

(𝑦, {+})

(𝑦, {+, 0})

(𝑦, {+, 0})

x = x - 1(𝑥, {+, 0})

(𝑥, {+, 0})

More Complicated Dataflow Analysis: Sensitivity

• Question:
• With Dataflow analysis, can we tell

whether there could be a divide-by-
zero vulnerability?

• Answer:
• We can tag the nodes with additional

information such as abstract domains

Entry

x = 3

y = 10

x > 0

y = y - 1 return x / y

true false

Abstract Domain: {+, 0, −}

(𝑥, {+})

(𝑦, {+})

(𝑦, {+, 0})

(𝑦, {+, 0})

x = x - 1(𝑥, {+, 0})

(𝑥, {+, 0})

Question: The analysis suggests that there is a
potential div-by-zero. But is it real?

More Complicated Dataflow Analysis: Sensitivity

• Question:
• With Dataflow analysis, can we tell

whether there could be a divide-by-
zero vulnerability?

• Answer:
• We can tag the nodes with additional

information such as abstract domains

Entry

x = 3

y = 10

x > 0

y = y - 1 return x / y

true false

Abstract Domain: {+, 0, −}

(𝑥, {+})

(𝑦, {+})

(𝑦, {+, 0})

(𝑦, {+, 0})

x = x - 1(𝑥, {+, 0})

(𝑥, {+, 0})

Question: The analysis suggests that there is a
potential div-by-zero. But is it real? NO

Dataflow Analysis with {+, 0, −}	abstract domains
reported a false positive div-by-zero alarms.

Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Static Analysis:
Taint Analysis
- (assuming correct specs)
Abstract Interpretation
- (assuming correct domains)

May report an alarm for developer
confirmation, and that is rejected

Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Static Analysis:
Taint Analysis
- (assuming correct specs)
Abstract Interpretation
- (assuming correct domains)

Dataflow Analysis & Abstract Domain generalizes to
entire space of input, but loses precision

Dataflow Analysis in Real Life: Taint Analysis

Dataflow Analysis in Real Life: Taint Analysis

🚩 Source

class CreateBucketController … {
 public void handle(
 HttpRequest req, HttpResponse res
) throws Exception {
 InputStream inputStream =
 new ByteBufInput…(req.getBody())

🎯 Sink

CreateBucketController.java

CreateBucketController.java

🏭 Factory LocalS3.java

XMLInputFactory input =
 new WstxInputFactory(); …
XmlMapper xmlMapper =
 new XmlMapper(
 new XmlFactory(input, …));
serviceFactory.register(
 XmlMapper.class,
 () -> xmlMapper);

(dataflow path of 6 nodes)

xmlMapper = serviceFactory
 .getInstance(XmlMapper.class); ...
CreateBucketConf conf =
 xmlMapper.readValue(
 inputStream, CreateBucketConf.class);

(A
dd

it
io

na
l T

ai
nt

 S
te

ps
)

1

2

3

4

Dataflow Analysis in Real Life: Taint Analysis

• Goal:
• See how a program point with “tainted

information” may flow through the code
• How is it “Manifested” into a real vulnerability

🚩 Source

class CreateBucketController … {
 public void handle(
 HttpRequest req, HttpResponse res
) throws Exception {
 InputStream inputStream =
 new ByteBufInput…(req.getBody())

🎯 Sink

CreateBucketController.java

CreateBucketController.java

🏭 Factory LocalS3.java

XMLInputFactory input =
 new WstxInputFactory(); …
XmlMapper xmlMapper =
 new XmlMapper(
 new XmlFactory(input, …));
serviceFactory.register(
 XmlMapper.class,
 () -> xmlMapper);

(dataflow path of 6 nodes)

xmlMapper = serviceFactory
 .getInstance(XmlMapper.class); ...
CreateBucketConf conf =
 xmlMapper.readValue(
 inputStream, CreateBucketConf.class);

(A
dd

it
io

na
l T

ai
nt

 S
te

ps
)

1

2

3

4

CVE-2025-27136

Dataflow Analysis in Real Life: Taint Analysis

• Goal:
• See how a program point with “tainted

information” may flow through the code
• How is it “Manifested” into a real vulnerability

• Taint Specification:
• Source: the HttpRequest parameter to a

handle function of a Java Servlet
• Sink: the readValue function of XmlMapper

🚩 Source

class CreateBucketController … {
 public void handle(
 HttpRequest req, HttpResponse res
) throws Exception {
 InputStream inputStream =
 new ByteBufInput…(req.getBody())

🎯 Sink

CreateBucketController.java

CreateBucketController.java

🏭 Factory LocalS3.java

XMLInputFactory input =
 new WstxInputFactory(); …
XmlMapper xmlMapper =
 new XmlMapper(
 new XmlFactory(input, …));
serviceFactory.register(
 XmlMapper.class,
 () -> xmlMapper);

(dataflow path of 6 nodes)

xmlMapper = serviceFactory
 .getInstance(XmlMapper.class); ...
CreateBucketConf conf =
 xmlMapper.readValue(
 inputStream, CreateBucketConf.class);

(A
dd

it
io

na
l T

ai
nt

 S
te

ps
)

1

2

3

4

CVE-2025-27136

Dataflow Analysis in Real Life: Taint Analysis

Dataflow Analysis in Real Life: Taint Analysis

Dataflow Analysis in Real Life: Taint Analysis

Taint Specification:
Source: the value parameter to the isValue function of a CronValidator
Sink: the buildConstraintViolationWithTemplate function of ConstraintValidatorContext

Dataflow Analysis in Real Life: Taint Analysis

• Where are those taint specifications coming from?

Dataflow Analysis in Real Life: Taint Analysis

• Where are those taint specifications coming from?

Dataflow Analysis in Real Life: Taint Analysis

• Where are those taint specifications coming from?

Dataflow Analysis in Real Life: CodeQL

Dataflow Analysis in Real Life: CodeQL

https://github.com/github/codeql/blob/main/java/ql/src/Security/CWE/CWE-022/TaintedPath.ql

https://github.com/github/codeql/blob/main/java/ql/src/Security/CWE/CWE-022/TaintedPath.ql
https://github.com/github/codeql/blob/main/java/ql/src/Security/CWE/CWE-022/TaintedPath.ql
https://github.com/github/codeql/blob/main/java/ql/src/Security/CWE/CWE-022/TaintedPath.ql
https://github.com/github/codeql/blob/main/java/ql/src/Security/CWE/CWE-022/TaintedPath.ql

Dataflow Analysis in Real Life: CodeQL

• Question:
• When we have a programming language for static analysis…
• Can we Synthesize Program in this language?

Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Static Analysis:
Taint Analysis
- (assuming correct specs)
Abstract Interpretation
- (assuming correct domains)

Dataflow Analysis & Abstract Domain generalizes to
entire space of input, but loses precision

Realistically, there is no “completely
correct” specifications

Software Testing: Impossible Triangle

Soundness

Completeness Termination

Never miss a real bug

Never raise a false alarm Always finish the analysis within finite time

Logistics – Week 9

• Assignment 3: Coding LLM Agents
• https://github.com/machine-programming/assignment-3
• Fully functional web-app agent. Due: Oct 23 (Thu)

• Forming groups for your final projects!
• Form a group of 2-3 before This Thursday (Oct 19 Oct 23)

https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3
https://github.com/machine-programming/assignment-3

