
Machine Programming
Lecture 18 – Programming Languages for Software Safety

Logistics – Week 10

• Oral Presentations
• Emails are being sending out; plans established
• Attendance will be noted down for oral presentation sessions!

• Final Projects
• Final project proposal: 1 page PDF (due on Sunday)
• Submit on GradeScope
• Send email to the instructor questions

E0ective Oral Presentation
• Title, Authors, and their Institutions stated clearly on first page
• Motivation

• What is the problem? Why do people care about this problem? What is the goal? What is the real-
world impact? Is there intellectual merit?

• Examples
• (Without getting into the technical details) show an example of end-to-end input and output; show

demo (images, videos, code snippets) if they are present.

• Methodology / Design / Experiments
• Illustrate top-down: start from overview, pipeline, vision, overall statistics
• Then go to the technical details: e.g., design decisions, formalism (code/theorem/math/algorithm),

evaluation metrics, experimental design, dataset/benchmark selection

• Evaluations / Results
• Figures, quantitative numbers, qualitative examples; connect the figures with findings and claims, e.g.,

“outperforms existing baselines on accuracy”, “is sample efficient”, “is more faithful”

• Critique
• Your critique of the paper: What does it do well? What does it miss? Any potential future directions?

Effective Oral Presentation (Cont.)
• How to study the paper

• Read paper thoroughly
• Ask LLM to help you summarize the paper and answer your question
• Ask LLM to help you find cited works that are relevant, which can strengthen your understanding

• How to make slides
• Follow the guidelines (on the previous slide)
• Find talks or presentations online, to study how they present the work
• Find existing resource online (slides, websites, versions of papers, blog posts, repositories, etc.)
• Take screenshots from the existing resources, don’t completely remake it
• Ask LLM to help with storytelling (IMPORTANT!) and preciseness of language

• Notes
• Be concise, you won’t have that much time (10-15 min); prepare at most 20 slides and no more
• Always check LLM outputs, DO NOT TRUST everything LLM says

Module 3: Overview
Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?

Synthesis Strategy
- How do we find such a program?

1. Syntax/Semantics/Functional correctness
2. Comprehensive test coverage
3. Has no security flaw
4. Optimized for runtime speed
5. …

Programming with Large Language Models
- Next token prediction, prompting, controlled decoding
- Iterative refinement, agentic frameworks and tool use
- Pre-training, fine-tuning, reinforcement learning

Enumeration: Bottom-up and Top-Down

Fixed

General Purpose Programming Language
Python / Java / C / Rust / …

Domain Specific Languages
SQL / LEAN / ROCQ / DATALOG / PDDL / …

Correct by Construction
Safe Programming Languages

Desirable Properties

Memory Safety

Concurrency Safety

Side-channel Resistance

Injection-safetyFunctional Assurance

Capability Safety
Smart-contract Safety

Type Safety

Control-flow Integrity
Data Integrity

Resource Safety

Termination

Memory Safety

Memory Safety

Read Only

Read/Write

Read/Write

Memory
(Managed by Operating System)

Memory Safety

Read Only

Read/Write

Read/Write

Memory
(Managed by Operating System)

User: Read ✅

Memory Safety

Read Only

Read/Write

Read/Write

Memory
(Managed by Operating System)

User: Read ✅

Memory Safety

Read Only

Read/Write

Read/Write

Memory
(Managed by Operating System)

User: Read ❌

Memory Safety

Read Only

Read/Write

Read/Write

Memory
(Managed by Operating System)

User: Write ❌

C Program that Breaks Memory Safety

int main() {
 int *p = NULL;
 *p = 42;
}

C Program that Breaks Memory Safety

Read Only

Read/Write

Read/Write

Memory
(Managed by Operating System)

…

0x00000000

0xffffffff

int main() {
 int *p = NULL;
 *p = 42;
}

C Program that Breaks Memory Safety

Read Only

Read/Write

Read/Write

Memory
(Managed by Operating System)

…

0x00000000

0xffffffff

User: Write ❌

int main() {
 int *p = NULL;
 *p = 42;
}

C Program that Noticeably Breaks Memory Safety

Read Only

Read/Write

Read/Write

Memory
(Managed by Operating System)

…

0x00000000

0xffffffff

User: Write ❌

int main() {
 int p[42];
 *p = 42;
}

liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out
fish: Job 1, './a.out' terminated
by signal SIGSEGV (Address boundary
error)

C Program that Noticeably Breaks Memory Safety

Read Only

Read/Write

Read/Write

Memory
(Managed by Operating System)

…

0x00000000

0xffffffff

User: Write ❌

int main() {
 int p[42];
 *p = 42;
}

liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out
fish: Job 1, './a.out' terminated
by signal SIGSEGV (Address boundary
error)

NULL Pointer Dereference

C Program that Silently Breaks Memory Safety

arr

Read Only

Read/Write

Memory
(Managed by Operating System)

…

0x00000000

0xffffffff

int main() {
 int arr[100];
 arr[182] = 42;
}

C Program that Silently Breaks Memory Safety

arr

Read Only

Read/Write

Memory
(Managed by Operating System)

…

0x00000000

0xffffffff

User: Write ✅

int main() {
 int arr[100];
 arr[182] = 42;
}

C Program that Silently Breaks Memory Safety

arr

Read Only

Read/Write

Memory
(Managed by Operating System)

…

0x00000000

0xffffffff

User: Write ✅

int main() {
 int arr[100];
 arr[182] = 42;
}

liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out

C Program that Silently Breaks Memory Safety

arr

Read Only

Read/Write

Memory
(Managed by Operating System)

…

0x00000000

0xffffffff

User: Write ✅

int main() {
 int arr[100];
 arr[182] = 42;
}

liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out

BuZer Overflow

C Program that Silently Breaks Memory Safety

arr

Read Only

Read/Write

Memory
(Managed by Operating System)

…

0x00000000

0xffffffff

User: Write ✅
liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out

int main() {
 int *arr = (int *)
 malloc(100 * sizeof(int));
 arr[182] = 42;
}

Read/Write

C Program that Silently Breaks Memory Safety

arr

Read Only

Read/Write

Memory
(Managed by Operating System)

…

0x00000000

0xffffffff

User: Write ✅
liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out

int main() {
 int *arr = (int *)
 malloc(100 * sizeof(int));
 arr[182] = 42;
}

Read/Write

Buffer Overflow

C Program that Silently Breaks Memory Safety

arr

Read Only

Read/Write

Memory
(Managed by Operating System)

…

0x00000000

0xffffffff

User: Write ✅
liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out

int main() {
 int *arr = (int *)
 malloc(100 * sizeof(int));
 arr[182] = 42;
}

Read/Write

Another issue with “arr”: Not free-ed

C Program that Silently Breaks Memory Safety

arr

Read Only

Read/Write

Memory
(Managed by Operating System)

…

0x00000000

0xffffffff

User: Write ✅
liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out

int main() {
 int *arr = (int *)
 malloc(100 * sizeof(int));
 arr[182] = 42;
}

Read/Write

Another issue with “arr”: Not free-ed

Memory Leak

C Program that Silently Breaks Memory Safety

arr (freed)

Read Only

Read/Write

Memory
(Managed by Operating System)

…

0x00000000

0xffffffff

liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out

int main() {
 int *arr = (int *)
 malloc(100 * sizeof(int));
 arr[99] = 42;
+ free(arr);
}

C Program that Silently Breaks Memory Safety

arr (freed)

Read Only

Read/Write

Memory
(Managed by Operating System)

…

0x00000000

0xffffffff

liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out
27

int main() {
 int *arr = (int *)
 malloc(100 * sizeof(int));
 arr[99] = 42;
 free(arr);
+ arr[3] = 27;
+ printf("%d\n", arr[3]);
}

User: Write ✅

C Program that Silently Breaks Memory Safety

arr (freed)

Read Only

Read/Write

Memory
(Managed by Operating System)

…

0x00000000

0xffffffff

liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out
27

int main() {
 int *arr = (int *)
 malloc(100 * sizeof(int));
 arr[99] = 42;
 free(arr);
+ arr[3] = 27;
+ printf("%d\n", arr[3]);
}

User: Write ✅

Use After Free

Takeaway

• C language does NOT have memory safety by-construct
• The responsibility of keeping memory safe is on the developers
• If we ask LLMs to write C code, the responsibility is on the LLMs

• The unsafe memory operations may not be always noticeable
• Silent undefined behavior is hard to catch

• Need extra tools to help catching silent issues
• E.g., most memory related issues can be caught by valgrind

(Memory) Safe by Construct: Python

int main() {
 int *arr = (int *)
 malloc(100 * sizeof(int));
 arr[182] = 42;
 free(arr);
 arr[3] = 27;
 printf("%d\n", arr[3]);
}

C/C++ Program Python Program
def main():
 arr = [()] * 100
 arr[182] = 42
File ”demo.py", line 3, in main
 arr[182] = 42
    ~~~^^^^^
IndexError: list assignment index 
out of range



(Memory) Safe by Construct: Python

int main() {
  int *arr = (int *)
    malloc(100 * sizeof(int));
arr[182] = 42;

  free(arr);
  arr[3] = 27;
  printf("%d\n", arr[3]);
}

C/C++ Program
Python Program
def main():
  arr = [()] * 100
+ if 182 > len(arr):
+   raise Exception(...)
  arr[182] = 42
File ”demo.py", line 3, in main
    arr[182] = 42
    ~~~^^^^^
IndexError: list assignment index
out of range

(Memory) Safe by Construct: Python

int main() {
 int *arr = (int *)

malloc(100 * sizeof(int));
 arr[99] = 42;
free(arr);

 arr[3] = 27;
 printf("%d\n", arr[3]);
}

C/C++ Program

Python Program
def main():
 arr = [()] * 100
 arr[99] = 42

(Memory) Safe by Construct: Python

int main() {
 int *arr = (int *)

malloc(100 * sizeof(int));
 arr[99] = 42;
free(arr);

 arr[3] = 27;
 printf("%d\n", arr[3]);
}

C/C++ Program

Python Program
def main():
 arr = [()] * 100
 arr[99] = 42

In Python, this is done
implicitly by memory
management system

(Memory) Safe by Construct: Python

int main() {
 int *arr1 = (int *)
 malloc(100 * sizeof(int));
 int *arr2 = arr1;
free(arr1);

 arr2[3] = 27;
 printf("%d\n", arr2[3]);
}

C/C++ Program Python Program
def main():
 arr1 = [()] * 100
 arr2 = arr1
del arr1

 arr2[3] = 27
 print(arr2[3])

(Memory) Safe by Construct: Python

int main() {
 int *arr1 = (int *)
 malloc(100 * sizeof(int));
 int *arr2 = arr1;
free(arr1);
arr2[3] = 27;

 printf("%d\n", arr2[3]);
}

C/C++ Program Python Program
def main():
 arr1 = [()] * 100
 arr2 = arr1
del arr1
arr2[3] = 27

 print(arr2[3])

(Memory) Safe by Construct: Python

int main() {
 int *arr1 = (int *)
 malloc(100 * sizeof(int));
 int *arr2 = arr1;
free(arr1);
arr2[3] = 27;

 printf("%d\n", arr2[3]);
}

C/C++ Program Python Program
def main():
 arr1 = [()] * 100
 arr2 = arr1
del arr1
arr2[3] = 27

 print(arr2[3])

() () () () … ()

Reference Count: 1

(Memory) Safe by Construct: Python

int main() {
 int *arr1 = (int *)
 malloc(100 * sizeof(int));
 int *arr2 = arr1;
free(arr1);
arr2[3] = 27;

 printf("%d\n", arr2[3]);
}

C/C++ Program Python Program
def main():
 arr1 = [()] * 100
 arr2 = arr1
del arr1
arr2[3] = 27

 print(arr2[3])

() () () () … ()

Reference Count: 2 (+1)

(Memory) Safe by Construct: Python

int main() {
 int *arr1 = (int *)
 malloc(100 * sizeof(int));
 int *arr2 = arr1;
free(arr1);
arr2[3] = 27;

 printf("%d\n", arr2[3]);
}

C/C++ Program Python Program
def main():
 arr1 = [()] * 100
 arr2 = arr1
del arr1
arr2[3] = 27

 print(arr2[3])

() () () () … ()

Reference Count: 1 (-1)

(Memory) Safe by Construct: Python

int main() {
 int *arr1 = (int *)
 malloc(100 * sizeof(int));
 int *arr2 = arr1;
free(arr1);
arr2[3] = 27;

 printf("%d\n", arr2[3]);
}

C/C++ Program Python Program
def main():
 arr1 = [()] * 100
 arr2 = arr1
del arr1
arr2[3] = 27

 print(arr2[3])

() () () 27 … ()

Reference Count: 1

(Memory) Safe by Construct: Python

int main() {
 int *arr1 = (int *)
 malloc(100 * sizeof(int));
 int *arr2 = arr1;
free(arr1);
arr2[3] = 27;

 printf("%d\n", arr2[3]);
}

C/C++ Program Python Program
def main():
 arr1 = [()] * 100
 arr2 = arr1
del arr1
arr2[3] = 27

 print(arr2[3])

() () () 27 … ()

Reference Count: 1

Garbage collection &
“free”ing only happens

when reference count (RC)
of an object goes to 0

(Memory) Safe by Construct: Rust

int main() {
 int *arr1 = (int *)
 malloc(100 * sizeof(int));
 int *arr2 = arr1;
free(arr1);
arr2[3] = 27;

 printf("%d\n", arr2[3]);
}

C/C++ Program

Rust Program

(Memory) Safe by Construct: Rust

Rust Program Single Ownership

Variable: arr1 Variable: arr2

0 0 0 0 … 0
vec![0; 100]

Own

(Memory) Safe by Construct: Rust

Rust Program Single Ownership

Variable: arr1 Variable: arr2

0 0 0 0 … 0
vec![0; 100]

ReadWrite

(Memory) Safe by Construct: Rust

Rust Program Single Ownership

Variable: arr1 Variable: arr2

0 0 0 0 … 0
vec![0; 100]

ReadWrite

(Memory) Safe by Construct: Rust

Rust Program Single Ownership

Variable: arr1 Variable: arr2

0 0 0 27 … 0
vec![0; 100]

ReadWrite

(Memory) Safe by Construct: Rust

Rust Program Single Ownership

Variable: arr1 Variable: arr2

0 0 0 27 … 0
vec![0; 100]

ReadWrite❌

Write attempt

(Memory) Safe by Construct: Rust

Rust Program

Single Ownership

Variable: arr1 Variable: arr2

0 0 0 0 … 0
vec![0; 100]

fn main() {
 let mut arr1 = vec![0; 100];
 let arr2 = &mut arr1;
 arr2[3] = 27;
 arr1[2] = 30;
}

(Memory) Safe by Construct: Rust

Rust Program

Single Ownership

Variable: arr1 Variable: arr2

0 0 0 0 … 0
vec![0; 100]

fn main() {
 let mut arr1 = vec![0; 100];
 let arr2 = &mut arr1;
 arr2[3] = 27;
 arr1[2] = 30;
}

Own

(Memory) Safe by Construct: Rust

Rust Program

Single Ownership

Variable: arr1 Variable: arr2

0 0 0 0 … 0
vec![0; 100]

fn main() {
 let mut arr1 = vec![0; 100];
 let arr2 = &mut arr1;
 arr2[3] = 27;
 arr1[2] = 30;
}

ReadWrite

(Memory) Safe by Construct: Rust

Rust Program

Single Ownership

Variable: arr1 Variable: arr2

0 0 0 0 … 0
vec![0; 100]

fn main() {
 let mut arr1 = vec![0; 100];
 let arr2 = &mut arr1;
 arr2[3] = 27;
 arr1[2] = 30;
}

ReadWriteOwn

Borrow

(Memory) Safe by Construct: Rust

Rust Program

Single Ownership

Variable: arr1 Variable: arr2

0 0 0 27 … 0
vec![0; 100]

fn main() {
 let mut arr1 = vec![0; 100];
 let arr2 = &mut arr1;
 arr2[3] = 27;
 arr1[2] = 30;
}

ReadWriteOwn

Borrow

(Memory) Safe by Construct: Rust

Rust Program

Single Ownership

Variable: arr1 Variable: arr2

0 30 0 27 … 0
vec![0; 100]

fn main() {
 let mut arr1 = vec![0; 100];
 let arr2 = &mut arr1;
 arr2[3] = 27;
 arr1[2] = 30;
}

ReadWriteOwn

Key Takeaway: Who is responsible for safety?

int main() {
 int *arr1 = (int *)
 malloc(100 * sizeof(int));
 int *arr2 = arr1;

free(arr1);
arr2[3] = 27;

 printf("%d\n", arr2[3]);
}

C/C++ Program Python Program
def main():
 arr1 = [()] * 100
 arr2 = arr1

del arr1
arr2[3] = 27

 print(arr2[3])

Rust Program
fn main() {
 let mut arr1 = vec![0; 100];
 let arr2 = &mut arr1;

arr2[3] = 27;
 arr1[2] = 30;
}

Developer / LLM

Python Runtime
Memory Management

Reference Counting
Garbage Collection

Rust Compiler
Linear type system

Ownership & borrow checker
Life-time resolver

Key Takeaway: Who can be trusted?

int main() {
 int *arr1 = (int *)
 malloc(100 * sizeof(int));
 int *arr2 = arr1;

free(arr1);
arr2[3] = 27;

 printf("%d\n", arr2[3]);
}

C/C++ Program Python Program
def main():
 arr1 = [()] * 100
 arr2 = arr1

del arr1
arr2[3] = 27

 print(arr2[3])

Rust Program
fn main() {
 let mut arr1 = vec![0; 100];
 let arr2 = &mut arr1;

arr2[3] = 27;
 arr1[2] = 30;
}

Developer / LLM

Python Runtime
Memory Management

Reference Counting
Garbage Collection

Rust Compiler
Linear type system

Ownership & borrow checker
Life-time resolver

NO Maybe yes Maybe yes

Potentially Bad Program Analyzer Potentially Safe ProgramCompiler

Programmer Gives to Sends to Produces…

✅

❌❌

✅

Potentially Bad Program Analyzer Potentially Safe Program

Safe Program

Shallow
Compiler

Strict
CompilerPotentially Bad Program

Programmer Gives to Sends to Produces…

✅

❌❌

✅

Programmer

✅

❌

Gives to Produces…

Desirable Properties

Memory Safety

Concurrency Safety

Side-channel Resistance

Injection-safetyFunctional Assurance

Capability Safety
Smart-contract Safety

Type Safety

Control-flow Integrity
Data Integrity

Resource Safety

Termination

Safe (?) Program

Program

Safe Program is not interesting

Program
Input

❌

Programs Take Input…

Program
Input

✅

Attack Surface is Exposed…

Program
Input

✅😈

Defense is Setup…

Program
Input

✅😈 💂

Defense is Setup, But

Program
Input

✅😈 💂

😈

Defense is Setup, But…

Program
Input

✅😈 💂

😈

(Main Channel) Normal Attack

Side Channel Attack

def check_password(expected_password, provided_password):
 if len(expected_password) != len(provided_password):
 return False
 for (expected_char, provided_char) in zip(expected_password, provided_password):
 if expected_char != provided_char:
 return False
 return True

def check_password(expected_password, provided_password):
 if len(expected_password) != len(provided_password):
 return False
 for (expected_char, provided_char) in zip(expected_password, provided_password):
 if expected_char != provided_char:
 return False
 return True

Expected Password: 12345678

Attempt 1: 13579
❌

Attempt 2: 02468
❌

Attempt 3: 12345
❌

def check_password(expected_password, provided_password):
 if len(expected_password) != len(provided_password):
 return False
 for (expected_char, provided_char) in zip(expected_password, provided_password):
 if expected_char != provided_char:
 return False
 return True

Expected Password: 12345678

Attempt 1: 13579
❌

Attempt 2: 02468
❌

Attempt 3: 12345
❌

Finishes in 4 CPU cycles Finishes in 2 CPU cycles Finishes in 12 CPU cycles

Estimation: 1 char match Estimation: 0 char match Estimation: 5 char match

me@computer ~/demo> python3 side-channel.py
Discovering length...
Length guessed: 7
Recovering characters by timing...
pos 0: picked 's' (median time=0.000492s) -> 's'
pos 1: picked '3' (median time=0.000741s) -> 's3'
pos 2: picked 'c' (median time=0.000998s) -> 's3c'
pos 3: picked 'r' (median time=0.001228s) -> 's3cr'
pos 4: picked '3' (median time=0.001474s) -> 's3cr3'
pos 5: picked 't' (median time=0.001722s) -> 's3cr3t'
pos 6: picked '!' (median time=0.002012s) -> 's3cr3t!'
Guessed secret: s3cr3t!

Side-Channel Attack: Non-Constant Time Op

Program
Input

😈 💂

😈

Output
(Feedback)

Side-Channel Attack: Non-Constant Time Op

Program
Input

😈 💂

😈

Output
(Feedback)

Indirect Feedback: Execution Time

Two Stage Login: Step 1

Two Stage Login: Step 2

Single Step Login

Mitigation: Constant-Time Operations

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

Non-Constant Time

Constant Time

C Program

C Program

Mitigation: Constant-Time Operations

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

Non-Constant Time

Constant Time

for (j = 0; j < md_block_size; j++, k++) {
 if (is_past_c) {
 b = 0x80;
 } else {
 b = data[k - header_length];
 }
 if (is_past_cp1 || (is_block_b && !is_block_a)) {
 b = 0;
 }
 block[j] = b;
}

C Program

C Program

Mitigation: Constant-Time Operations

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

Non-Constant Time

Constant Time

for (j = 0; j < md_block_size; j++, k++) {
 if (is_past_c) {
 b = 0x80;
 } else {
 b = data[k - header_length];
 }
 if (is_past_cp1 || (is_block_b && !is_block_a)) {
 b = 0;
 }
 block[j] = b;
}

C Program

C Program

Are we trusting Human/LLM to write this correctly?

Mitigation: Constant-Time Operations

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

Non-Constant Time

Constant Time

for (j = 0; j < md_block_size; j++, k++) {
 if (is_past_c) {
 b = 0x80;
 } else {
 b = data[k - header_length];
 }
 if (is_past_cp1 || (is_block_b && !is_block_a)) {
 b = 0;
 }
 block[j] = b;
}

C Program

C Program

Are we trusting Human/LLM to write this correctly?

Mitigation: Constant-Time Operations

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

Non-Constant Time

Constant Time

for (j = 0; j < md_block_size; j++, k++) {
 if (is_past_c) {
 b = 0x80;
 } else {
 b = data[k - header_length];
 }
 if (is_past_cp1 || (is_block_b && !is_block_a)) {
 b = 0;
 }
 block[j] = b;
}

C Program

C Program

Are we trusting Human/LLM to write this correctly?

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

Potentially Bad Program Analyzer Potentially Safe Program

Safe Program

Shallow
Compiler

Strict
CompilerPotentially Bad Program

Programmer Gives to Sends to Produces…

✅

❌❌

✅

Programmer

✅

❌

Gives to Produces…

Takeaway
• There are many generally used languages with different safety features: memory safety,

concurrency safety, smart-contract safety, …
• Instead of writing buggy code and use analysis tools to detect and fix them afterwards, we

may prefer employing a better language that is safe-by-construct
• The language may be more limiting, but is safer
• A good safe language mitigates the limitations well and is fast

• We want to ask LLM to write programs in safer languages
• It maybe harder to get the compiler to compile the program, but the compiled program

already has good and provable safety properties
• E.g., Generate Rust > C
• E.g., Generate TypeScript > JavaScript

Space of all
the strings

Space of all
valid programs

Satisfy
Functional

Constraints

Checked all
the types

Programs
matching the

examples

Desired Program

Programs
that are X

SAFE

Logistics – Week 10

• Oral Presentations
• Emails are being sending out; plans established
• Attendance will be noted down for oral presentation sessions!

• Final Projects
• Final project proposal: 1 page PDF (due on Sunday)
• Submit on GradeScope
• Send email to the instructor questions

