Machine Programming

Lecture 18 — Programming Languages for Software Safety

Logistics — Week 10

* Oral Presentations
* Emails are being sending out; plans established
* Attendance will be noted down for oral presentation sessions!

* Final Projects
* Final project proposal: 1 page PDF (due on Sunday)
 Submit on GradeScope
* Send email to the instructor questions

Effective Oral Presentation

* Title, Authors, and their Institutions stated clearly on first page

* Whatis the problem? Why do people care about this problem? What is the goal? What is the real-
world impact? Is there intellectual merit?

e (Without getting into the technical details) show an example of end-to-end input and output; show
demo (images, videos, code snippets) if they are present.

/ /

* |llustrate top-down: start from overview, pipeline, vision, overall statistics
* Then go to the technical details: e.g., design decisions, formalism (code/theorem/math/algorithm),
evaluation metrics, experimental design, dataset/benchmark selection

/

* Figures, quantitative numbers, qualitative examples; connect the figures with findings and claims, e.g.,

b {3

“outperforms existing baselines on accuracy”, “is sample efficient”, “is more faithful”

* Your critique of the paper: What does it do well? What does it miss? Any potential future directions?

Effective Oral Presentation (Cont.)

* How to study the paper

Read paper thoroughly

* Ask LLM to help you summarize the paper and answer your question
* AskLLM to help you find cited works that are relevant, which can strengthen your understanding

* How to make slides

Follow the guidelines (on the previous slide)

Find talks or presentations online, to study how they present the work

Find existing resource online (slides, websites, versions of papers, blog posts, repositories, etc.)
Take screenshots from the existing resources, don’t completely remake it

Ask LLM to help with storytelling and preciseness of language

* Notes

Be concise, you won’t have that much time (10-15 min); prepare at most 20 slides and no more

* Always check LLM outputs, DO NOT TRUST everything LLM says

Module 3: Overview

Synthesis Strategy

How do we find such a program?

Fixed

Behavioral Specification
- What should the program do?

Syntax/Semantics/Functional correctness
Comprehensive test coverage

Has no security flaw

Optimized for runtime speed

OhObd=

Structural Specification
- Whatis the space of the programs?

General Purpose Programming Language
Python/Java/C/Rust/ ...

Domain Specific Languages
SQL/LEAN /ROCQ / DATALOG /PDDL/ ...

Correct by Construction

Safe Programming Languages

Desirable Properties

Memory Safet
y y Side-channel Resistance

Termination

Functional Assurance Concurrency Safety Injection-safety

N Type Safety
Capability Safety
Smart-contract Safety

Control-flow Integrity Resource Safety

Data Integrity

Memory Safety

Accion ¥ Herramientas v Ctrl+Alt+Supr

Segmentation fault
Segmentation fault
sbinssh: error while loading shared libraries: m F8aSaETans
cammot open shared object file: No such file or directory
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault

Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault

Memory Safety

Memory
(Managed by Operating System)

Accion ¥ Herramientas v Ctrl+Alt+Supr

Segmentation fault Read Only

Segmentation fault
/bin/sh: error while loading shared libraries: m F8aSuETan
canmot open shared object file: No such file or directory
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault

Segmentation fault

Segmentation fault :
Segmentation fault Read/wrlte
Segmentation fault

Segmentation fault

Segmentation fault

Read/Write

Memory Safety

Memory
(Managed by Operating System)

Accion ¥ Herramientas v Ctrl+Alt+Supr USGI’I Read
Segmentation fault Read Only

Segmentation fault
/bin/sh: error while loading shared libraries: m F8aSuETan
canmot open shared object file: No such file or directory
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault

Segmentation fault

Segmentation fault :
Segmentation fault Read/wrlte
Segmentation fault

Segmentation fault

Segmentation fault

Read/Write

Memory Safety

Memory
(Managed by Operating System)

Accion ¥ Herramientas v Ctrl+Alt+Supr

Segmentation fault Read Only

Segmentation fault
/bin/sh: error while loading shared libraries: m F8aSuETan
canmot open shared object file: No such file or directory
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault

g o - User: Read
fault Read/Write

Segmentation

Segmentation fault
Segmentation fault
Segmentation fault

Read/Write

Memory Safety

Memory
(Managed by Operating System)

Accion ¥ Herramientas v Ctrl+Alt+Supr

Segmentation fault Read Only

Segmentation fault
/bin/sh: error while loading shared libraries: m F8aSuETan
canmot open shared object file: No such file or directory
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault

Segmentation fault

Segmentation fault H
Segmentation fault Read/wrlte
Segmentation fault

Segmentation fault

Segmentation fault USGI" Read x

Read/Write

Memory Safety

Memory
(Managed by Operating System)

Accién ¥ Herramientas v Ctrl+Alt+Supr USGI‘I Wl‘lte x
Segmentation fault Read Only

Segmentation fault
/bin/sh: error while loading shared libraries: m F8aSuETan
canmot open shared object file: No such file or directory
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault
Segmentation fault

Segmentation fault

Segmentation fault H
Segmentation fault Read/wrlte
Segmentation fault

Segmentation fault

Segmentation fault

Read/Write

C Program that Breaks Memory Safety

int main() {
int *p = NULL;
*p = 42;

I3

C Program that Breaks Memory Safety

Memory

(Managed by Operating System)
Oxffffffff

Read Only
int main() {
int *p = NULL;
*p = 42; Read/Write

}

Read/Write

0x00000000

C Program that Breaks Memory Safety

Memory
(Managed by Operating System)
OXTFFFFffff
Read Only
int main() {
int *p = NULL;
*p = 42; Read/Write
¥
Read/Write

0x00000000 User: Write x

C Program that Noticeably Breaks Memory Safety

Memory
(Managed by Operating System)

Oxffffffff
Read Only {
int main() {

int pl42];
*p = 42,

¥
Read/Write {

liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out

fish: Job 1, './a.out' terminated .
by signal SIGSEGV (Address boundary Read/Write 4:
error)

0x00000000 «—— User: Write x

C Program that Noticeably Breaks Memory Safety

CWE-476: NULL Pointer Dereference
Weakness ID: 476 Memory
Vulnerability Mapping: ALLOWED .
Abstraction: Base (Managed by Operating System)
Oxffffffff
NULL Pointer Dereference Read Only {

Read/Write {

liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out

fish: Job 1, './a.out' terminated Read/Writ {:
by signal SIGSEGV (Address boundary ca rite
error)

0x00000000 «—— User: Write)(

C Program that Silently Breaks Memory Safety

Memory
(Managed by Operating System)

OXTIffffff —

Read Only -

int main() {
int arr[100]; |
arr[182] = 42; Read/Write —

1 -

\

arr

0x00000000

C Program that Silently Breaks Memory Safety

int main() {
int arr([100];
arr[182] = 42;
¥

OXTIffffff

Read Only -

Read/Write -

0x00000000

—

\

Memory

(Managed by Operating System)

arr

«—— User: Write

C Program that Silently Breaks Memory Safety

Memory
(Managed by Operating System)

OXTFFFFfff —
Read Only -

int main() { _

int arr[100]; Read/Writ
_ . ea rite —
Y arr[182] = 42; arr «—— User: Write ai

liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out

0x00000000

C Program that Silently Breaks Memory Safety

CWE-121: Stack-based Buffer Overflow

Weakness ID: 121
Vulnerability Mapping: ALLOWED
Abstraction: Variant

Buffer Overflow
Mmaln

int arr([100];
arr[182] = 42;
¥

liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out

OXTIffffff

Read Only -

Read/Write -

0x00000000

—

\

Memory
(Managed by Operating System)

arr

«—— User: Write

C Program that Silently Breaks Memory Safety

int main() {
int xarr = (int x)
malloc(100 x sizeof(int));
arr[182] = 42;
}

liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out

OXTIffffff

Read Only -

Read/Write -

—

\

Read/Write {

0x00000000

Memory
(Managed by Operating System)

arr

«—— User: Write

C Program that Silently Breaks Memory Safety

CWE-122: Heap-based Buffer Overflow

Weakness ID: 122
Vulnerability Mapping: ALLOWED
Abstraction: Variant

Buffer Overflow

int xarr = (int *)
malloc(100 *x sizeof(int));
arr[182] = 42;
}

liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out

OXTIffffff

Read Only -

Read/Write -

—

\

Read/Write {

0x00000000

Memory
(Managed by Operating System)

arr

«—— User: Write

C Program that Silently Breaks Memory Safety

Memory
(Managed by Operating System)
OxFFEFFFf —
Read Only -
int main() {
int xarr = (int *) B
malloc(100 x sizeof(int)); Read/Write —
arr[182] = 42;
J— -
Anotherissue with“arr”: Not free-ed 1
-l.ik}yulllu\.. VA VA VA PAS | \V L y\..\.. ULV s U .
liby@mac ~/L/P/Demo> ./a.out Read/Write { arr «—— User: Write
0x00000000

C Program that Silently Breaks Memory Safety

CWE-401: Missing Release of Memory after Effective Lifetime

Weakness ID: 401
Vulnerability Mapping: ALLOWED M e m O ry
iant

Abstraction: Varian
(Managed by Operating System)

OXTIffffff —

Memory Leak Read Only —

int xarr = (int %) B
malloc(100 x sizeof(int)); Read/Write -
arr[182] = 42;
y — -
Anotherissue with “arr”: Not free-ed }
-l.ik}yelllu\.. T/ =71 /J UV~ y\.‘\.— UCIinu s © . P—
liby@mac ~/L/P/Demo> ./a.out Read/Write { arr «<—— User: Write

0x00000000

C Program that Silently Breaks Memory Safety

Memory
(Managed by Operating System)
OXFFFFFFFf —
int main() A Read Only -
int xarr = (int x)
malloc(100 x sizeof(int)); B
arr(99] = 42; Read/Write —
+ free(arr);
} -
liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out arr (freed)
0x00000000

C Program that Silently Breaks Memory Safety

int main() {

int xarr = (int x)
malloc(100 x sizeof(int));

arr[99] = 42;
free(arr);

+ arr[3] = 27;

+ printf("sd\n", arr([3]);

}

liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out
27

OXTIffffff

Read Only -

Read/Write -

—

=
=

0x00000000

=

Memory
(Managed by Operating System)

arr (freed)

«—— User: Write

C Program that Silently Breaks Memory Safety

CWE-416: Use After Free

Weakness ID: 416
Vulnerability Mapping: ALLOWED

Abstraction: Variant

Use After Free (int));

free(arr);
+ arr[3] = 27;

+ printf("%d\n", arr[3]);
}

liby@mac ~/L/P/Demo> gcc demo.c
liby@mac ~/L/P/Demo> ./a.out
27

OXTIffffff

Read Only -

Read/Write -

0x00000000

—

\

Memory

(Managed by Operating System)

arr (freed)

«—— User: Write

Takeaway

* C language does have memory safety

* The of keeping memory safe is on the
* |If we ask LLMs to write C code, the responsibility is on the LLMs

* The unsafe memory operations may not be always
* Silent undefined behavior is hard to catch

* Need to help catching silent issues
* E.g., most memory related issues can be caught by

(Memory) Safe by Construct: Python

C/C++ Program

int main() {
int *%arr = (int)
malloc(100 * sizeof(int));
arr[182] = 42;
free(arr);
arr[3] = 27;
printf("%d\n", arr[3]);

Python Program

def main():
arr = [()] *x 100
arr[182] = 42

File "demo.py", line 3, in main
arr[182] = 42

NNNAAAAA

IndexError: list assignment index
out of range

(Memory) Safe by Construct: Python

C/C++ Program

Python Program

int main() {
int *%arr = (int)
malloc(100 * sizeof(int));
arr[182] = 42;
free(arr);
arr[3] = 27;
printf("%d\n", arr[3]);

def main():
arr = [()] x 100

+ if 182 > len(arr):

+ raise Exception(...)
arr[182] = 42

File "demo.py", line 3, in main
arr[182] = 42

P NAAAAA

IndexError: list assignment index
out of range

(Memory) Safe by Construct: Python

C/C++ Program

int main() {

int *xarr = (int) Python Program

malloc(100 *x sizeof(int)); def main():
arr[99] = 42; arr = [()] *x 100
free(arr); arr[99] = 42
arr[3] = 27;

printf("%d\n", arr[3]);

(Memory) Safe by Construct: Python

C/C++ Program

int main() {
int xarr = (int)

malloc(100 *x sizeof(int));

arr[99] = 42;
free(arr);
arr[3] = 27;

printf("%d\n", arr[3]);

Python Program

def main():
arr = [()] *x 100
arr[99] = 42

In Python, this is done
implicitly by memory
management system

|

(Memory) Safe by Construct: Python

C/C++ Program

Python Program

int main() {
int *%arrl = (int *)
malloc(100 * sizeof(int));
int xarr2 = arrl;
free(arrl);
arr2[3] = 27;
printf("sd\n", arr2[3]);

def main():
arrl = [()] *x 100
arr2 = arrl
del arrl
arr2[3] = 27
print(arr2[3])

(Memory) Safe by Construct: Python

C/C++ Program

Python Program

int main() {
int *%arrl = (int *)
malloc(100 * sizeof(int));
int xarr2 = arrl;
free(arrl);
arr2[3] = 27;
printf("sd\n", arr2[3]);

def main():
arrl = [()] *x 100
arr2 = arrl
del arrl
arr2[3] = 27
print(arr2[3])

(Memory) Safe by Construct: Python

C/C++ Program

Python Program

e

int main() {
int *%arrl = (int *)
malloc(100 * sizeof(int));
int xarr2 = arrl;
free(arrl);
arr2[3] = 27;
printf("sd\n", arr2[3]);

def main():
arrl = [()] *x 100

arr2 = arrl
del arrl
arr2[3] = 27
print(arr2[3])

0101070

()

Reference Count: 1

(Memory) Safe by Construct: Python

C/C++ Program

Python Program 4,//’11:::::::‘

int main() {
int *%arrl = (int *)
malloc(100 * sizeof(int));
int xarr2 = arrl;
free(arrl);
arr2[3] = 27;
printf("%d\n", arr2[3]);

def main():
arrl = * 100
arr2 = arrl
del arrl
arr2[3] = 27
print(arr2[3])

01010700

Reference Count: 2 (+1)

(Memory) Safe by Construct: Python

01010700

C/C++ Program Python Program / Reference Count: 1 (-1)
int main() { def main():

int xarrl = (int) arrl = * 100

malloc(100 *x sizeof(int)); arr2-= arrl

int *arr2 = arrl; del arrl

free(arrl); arr2[3] = 27

arr2[3] = 27; print(arr2[3])

printf("sd\n", arr2[3]);
}

(Memory) Safe by Construct: Python

001027 ...70

C/C++ Program Python Program / Reference Count: 1
int main() { def main():

int *%arrl = (int *) arrl = *x 100

malloc(100 * sizeof(int)); arr2-= arrl

int *arr2 = arrl; del arrl

free(arrl); arr2[3] = 27

arr2[3] = 27; print(arr2[3])

printf("sd\n", arr2[3]);
}

(Memory) Safe by Construct: Python

C/C++ Program

001027 ...70

Python Program / Reference Count: 1

int main() {
int *%arrl = (int *)
malloc(100 * sizeof(int));
int xarr2 = arrl;
free(arrl);
arr2[3] = 27;
printf("sd\n", arr2[3]);

def main():
arrl = * 100
arr2—= arrl
del arrl
arr2[3] = 27

print(arr2[31)

-

Garbage collection &
“free”ing only happens
when reference count (RC)
of an object goesto 0

,/

(Memory) Safe by Construct: Rust

C/C++ Program

Rust Program

int main() {
int *%arrl = (int *)
malloc(100 * sizeof(int));
int xarr2 = arrl;
free(arrl);
arr2[3] = 27;
printf("%d\n", arr2[3]);

& testlrs 1 X m -

fn main() {
let mut arrl = vec![0; 100];
let mut arr2 = arrl;

) arr2[3] = 27;
5 arrl[1l] = 34

borrow of moved value: “arrl’
value borrowed here after move rustc(Click for full compiler diagnostic)

testl.rs(3, 18): value moved here

testl.rs(2, 7): move occurs because “arrl’ has type "Vec<i32>", which does not
implement the “Copy trait

testl.rs(3, 22): consider cloning the value if the performance cost is
acceptable: “.clone()’

let mut arrl: Vec<i32>

(Memory) Safe by Construct: Rust

Rust Program

® testlrs 1 X 0

fn main() {
let mut arrl

vec![0; 100];

let mut arr2 = arrl;
) arr2[3] = 27;
5 arrl[1l] = 34

borrow of moved value: “arrl’
value borrowed here after move rustc(Click for full compiler diagnostic)

testl.rs(3, 18): value moved here

testl.rs(2, 7): move occurs because “arrl’ has type "Vec<i32>", which does not
implement the "Copy trait

testl.rs(3, 22): consider cloning the value if the performance cost is
acceptable: ‘.clone()’

let mut arrl: Vec<i32>

Single Ownership

vec![0; 100]

0 O

0

0

Own

Variable: arr1

Variable: arr2

(Memory) Safe by Construct: Rust

Rust Program

® testlrs 1 X (1

fn main() {
let mut arrl = vec![0; 100];

let mut arr2 = arrl;

) arr2(3] = 27;
5 arrl[1l] = 34

borrow of moved value: “arrl’
value borrowed here after move rustc(Click for full compiler diagnostic)

testl.rs(3, 18): value moved here

testl.rs(2, 7): move occurs because “arrl’ has type "Vec<i32>", which does not
implement the "Copy" trait

testl.rs(3, 22): consider cloning the value if the performance cost is
acceptable: “.clone()’

let mut arrl: Vec<i32>

Single Ownership

vec![0; 100]

0 0|0

0

Write Read

Variable: arr1

Variable: arr2

(Memory) Safe by Construct: Rust

Rust Program

® testlrs 1 X (1

fn main() {
let mut arrl = vec![0; 100];
let mut arr2 = arrl;

) arr2(3] = 27;
5 arrl[1l] = 34

borrow of moved value: “arrl’
value borrowed here after move rustc(Click for full compiler diagnostic)

testl.rs(3, 18): value moved here

testl.rs(2, 7): move occurs because “arrl’ has type "Vec<i32>", which does not
implement the "Copy" trait

testl.rs(3, 22): consider cloning the value if the performance cost is
acceptable: “.clone()’

let mut arrl: Vec<i32>

Single Ownership

vec![0; 100]

0 O

0 0

Variable: arr1

Write

Read

Variable: arr2

(Memory) Safe by Construct: Rust

Rust Program

® testlrs 1 X (1

fn main() {
let mut arrl
let mut arr2

vec![0; 100];
arrl;

) arr2(3] = 27;
5 arrl[1l] = 3ﬂ

borrow of moved value: “arrl’
value borrowed here after move rustc(Click for full compiler diagnostic)

testl.rs(3, 18): value moved here

testl.rs(2, 7): move occurs because “arrl’ has type "Vec<i32>", which does not
implement the "Copy" trait

testl.rs(3, 22): consider cloning the value if the performance cost is
acceptable: “.clone()’

let mut arrl: Vec<i32>

Single Ownership

vec![0; 100]

0 O

0 | 27

Variable: arr1

Write

Read

Variable: arr2

(Memory) Safe by Construct: Rust

Rust Program

® testlrs 1 X (1

fn main() {
let mut arrl

vec![0; 100];

let mut arr2 = arrl;
) arr2[3] = 27;
5 arri[1] = 3ﬂ

borrow of moved value: “arrl’
value borrowed here after move rustc(Click for full compiler diagnostic)

testl.rs(3, 18): value moved here

testl.rs(2, 7): move occurs because “arrl’ has type "Vec<i32>", which does not
implement the "Copy" trait

testl.rs(3, 22): consider cloning the value if the performance cost is
acceptable: “.clone()’

let mut arrl: Vec<i32>

<

Single Ownership

vec![0; 100]

0 O

0 | 27

Write attempt «
/

¥
/
Y4

Variable: arr1

Write

Read

Variable: arr2

(Memory) Safe by Construct: Rust

Single Ownership

vec![0; 100]
O/, 00 0|.. 0

Rust Program

fn main() {
let mut arrl = vec![0; 100];
let arr2 = &mut arril;
arr2[3]

arrl[2]
} Variable: arr1 Variable: arr2

(Memory) Safe by Construct: Rust

Single Ownership

vec![0; 100]

fn main() { 0j0j0]0O|-]0
let mut arrl = vec![0; 100]; I
let arr2 = &mut arri; 0%9///
arr2[3]

arrl[2]
} Variable: arr1 Variable: arr2

Rust Program

(Memory) Safe by Construct: Rust

Single Ownership

vec![0; 100]

fn main() { 0O/0/0/0|... 0

let mut arrl = vec![0; 100]; <ﬂ

let arr2 = &mut arrl; Write
arr2[3] = 27; e // Read
arrl[2] = 30;

} Variable: arr1 Variable: arr2

Rust Program

(Memory) Safe by Construct: Rust

Rust Program

fn main() {
let mut arrl = vec![0
let arr2 = &mut arril;

1 1001 ;

arr2[3]
arrl[2]

Single Ownership

vec![0; 100]
O/, 00 0|.. 0

V\ V\
N\
i AN
Own Write®*, Read
NN\
N\
\N N\

Variable: arr1 «<— Variable: arr2
Borrow

(Memory) Safe by Construct: Rust

Rust Program

fn main() {
let mut arrl = vec![0
let arr2 = &mut arril;
arr2[3]

1 1001 ;

arrl[2]

Single Ownership

vec![0; 100]
O 0/ 0 27|..|0

V\ V\
N\
i AN
Own Write®*, Read
NN\
N\
\N N\

Variable: arr1 «<— Variable: arr2
Borrow

(Memory) Safe by Construct: Rust

Rust Program

fn main() {
let mut arrl = vec![0; 100];
let arr2 = &mut arril;
arr2[3] = 27;
arrl[2] 30;

<

Single Ownership

vec![0; 100]
O 3 0 27|.../0
O .
W%V”%ead
Variable: arr1 Vatrtablte—arr2

Key Takeaway: Who is responsible for safety?

C/C++ Program Python Program Rust Program
int main() { def main(): fn main() {
int xarrl = (int x) arrl = [()] * 100 let mut arrl = vec![0; 100];
malloc(100 * sizeof(int)); arr2 = arrl let arr2 = &mut arril;
int *xarr2 = arrl; del arril arr2[3] = 27;
free(arrl); arr2[3] = 27 arrl[2] = 30;
arr2[3] = 27; print(arr2[31) }
printf("sd\n", arr2[3]);
}
Python Runtime Rust Compiler
Memory Management Linear type system
Developer/LLM y g . : ype sy
Reference Counting Ownership & borrow checker

Garbage Collection Life-time resolver

Key Takeaway: Who can be trusted?

C/C++ Program

Python Program

Rust Program

int main() {
int xarrl = (int x)
malloc(100 * sizeof(int));
int *xarr2 = arrl;
free(arrl);
arr2[3] = 27;
printf("%d\n", arr2[3]);

def main():
arrl = [()] * 100
arr2 = arrl
del arril
arr2[3] = 27
print(arr2([3])

fn main() {
let mut arrl = vec![0; 100];
let arr2 = &mut arrl;
arr2[3] 27;
arrif2] 30;

}

Developer/LLM

NO

Python Runtime
Memory Management
Reference Counting
Garbage Collection

Maybe yes

Rust Compiler
Linear type system
Ownership & borrow checker
Life-time resolver

Maybe yes

Work with Us R&D Opportunities Programs Offices News Events Careers About

Home Research Programs TRACTOR: Translating All C To Rust

TRACTOR: Translating All C to Rust

Work with Us R&D Opportunities Programs Offices News Events Careers About \

| Summary
TRACTOR: | After more than two decades of grappling with memory safety issues in C and C++, the
software engineering community has reached a consensus. It's not enough to rely on bug-
finding tools.

The preferred approach is to use “safe” programming languages that can reject unsafe
programs at compile time, thereby preventing the emergence of memory safety issues.

The TRACTOR program aims to automate the translation of legacy C code to Rust. The goal is
to achieve the same quality and style that a skilled Rust developer would produce, thereby
eliminating the entire class of memory safety security vulnerabilities present in C programs.

This program may involve novel combinations of software analysis, such as static analysis
and dynamic analysis, and machine learning techniques like large language models.

Work with Us R&D Opportunities Programs Offices News Events Careers About | Q

, finding tools.

LI

programs at com

The TRACTOR pi
to achieve the sg
eliminating the el

This program ma
and dynamic ane

TRACTOR

TRANSLATING ALLCTORUST

Type-migrating C-to-Rust translation using a large language

model
1 1 Towards Translating Real-World Code with LLMs:
Jaemin Hong'(- Sukyoung Ryu A Study of Translating to Rust
Accepted: 10 October 2024 / Published online: 17 October 2024 Hasan Ferit Eniser” Hanliang Zhang” Cristina David
© The Author(s) 2024 MPI-SWS University of Bristol University of Bristol
Germany UK UK
Meng Wang Maria Christakis Brandon Paulsen
University of Bristol TU Wien Amazon Web Services, Inc.
UK Austria UsS
. . Joey Dodds Daniel Kroening
Context-aware Co.de Segmentation for C-to-Rust Translation | , - ‘o " . e Amazon Web Services. Inc.
using Large Language Models US US
Momoko Shiraishi Takahiro Shinagawa
The University of Tokyo The University of Tokyo
Tokyo, Japan Tokyo, Japan
shiraishi@os.is.s.u-tokyo.ac.jp shina@is.s.u-tokyo.ac.jp

LLM-DRIVEN MULTI-STEP TRANSLATION FROM C TO RUST
USING STATIC ANALYSIS

Tianyang Zhou* !, Haowen Lin !, Somesh Jha* 2, Mihai Christodorescu® 3, Kirill Levchenko! !, and
Varun Chandrasekaran' !
"University of Illinois Urbana-Champaign
2University of Wisconsin—-Madison
3Google

Programmer Gives to Sends to Produces...

—*[Potentially Bad Program] —>[Compiler]@*[Analyzer]ﬁ—»[Potentially Safe Program]

[X X

Programmer Gives to Sends to Produces...

Shallow [] [.]
Compiler @ | Analyzer - Potentially Safe Program

[X X

- [Potentially Bad Program] —

Programmer Gives to Produces...

— [Potentially Bad Program]—»[C(?rtr::acirer L—>[Safe Program]
T

Desirable Properties

o Side-channel Resistance
Termination

Functional Assurance Concurrency Safety Injection-safety

N Type Safety
Capability Safety
Smart-contract Safety

Control-flow Integrity Resource Safety

Data Integrity

Safe (?) Program

S

Safe Program is not interesting

Input
>4 Program

Programs Take Input...

Attack Surface is Exposed...

Defense is Setup...

Defense is Setup, But

Defense is Setup, But...

(Maln Channel) Normal Attack /
Input
3V Program
PN

@

Side Channel Attack

.‘. Jsername

a Password Forgot password?

def check_password(expected_password, provided_password):
if len(expected_password) != len(provided_password):
return False
for (expected_char, provided_char) in zip(expected_password, provided_password):
if expected_char != provided_char:
return False
return True

def check_password(expected_password, provided_password):
if len(expected_password) != len(provided_password):
return False
for (expected_char, provided_char) in zip(expected_password, provided_password):
it expected_char !'= provided_char:
return False
return True

Expected Password: 12345678

Attempt 1: 13579 Attempt 2: 02468 Attempt 3: 12345

X X X

def check_password(expected_password, provided_password):
if len(expected_password) != len(provided_password):
return False
for (expected_char, provided_char) in zip(expected_password, provided_password):
it expected_char !'= provided_char:
return False
return True

Expected Password: 12345678

Attempt 1: 13579 Attempt 2: 02468 Attempt 3: 12345

X X X

Finishesin 4 CPU cycles Finishesin 2 CPU cycles Finishesin 12 CPU cycles

Estimation: 1 char match Estimation: O char match Estimation: 5 char match

—-—— Victim (vulnerable) -——
SECRET = "s3cr3t!" -# real secret (attacker doesn't know)

def check_password(expected_password: str, user_supplied_password: str) -> bool:

if len(expected_password) != len(user_supplied_password):
return False

for a, b in zip(expected_password, user_supplied_password):
dummy_operation_that_takes_time()
if a != b:

return False
dummy_operation_that_takes_time()
return True

def dummy_operation_that_takes_time():
for i in range(10000):
i+=1i

A wrapper that an attacker times (simulate server handling)

def victim_check(attempt: str) —> bool:
In a real server there is processing overhead and network jitter.
We keep it simple here.
return check_password(SECRET, attempt)

me@computer ~/demo> python3 side-channel.py
Discovering length...

Length guessed: 7

Recovering characters by timing...

pos @: picked 's' (median time=0.000492s) -> 's'

pos 1: picked '3' (median time=0.000741s) -> 's3'

pos 2: picked 'c' (median time=0.000998s) —> 's3c'

pos 3: picked 'r' (median time=0.001228s) -> 's3cr'
pos 4: picked '3' (median time=0.001474s) —> 's3cr3'
pos 5: picked 't' (median time=0.001722s) -> 's3cr3t'
pos 6: picked '!' (median time=0.002012s) -> 's3cr3t!'

Guessed secret: s3cr3t!

—-—— Attacker ——-
CHARSET = string.ascii_letters + string.digits + string.punctuation # search space
SAMPLES_PER_TRY = 30

def discover_length(max_len=32):
"""Discover password length by trying lengths 1..max_len"""
timings = []
for L in range(1, max_len + 1):
attempt = "A" *x L
elapsed = time_call(victim_check, attempt)
timings.append((L, elapsed))
choose length with (largest?) — here length equality to secret will often take longer
best = max(timings, key=lambda x: x[1])
return best[@], timings

def recover_by_timing(known_len):
recovered = ""
for pos in range(known_len):
best_char = None
best_time = -1.0
for ch in CHARSET:
attempt = (recovered + ch).ljust(known_len, "A") # fill remaining with dummy chars
elapsed = time_call(victim_check, attempt)
if elapsed > best_time:
best_time = elapsed
best_char = ch
recovered += best_char
print(f"pos {pos}: picked '{best_char}' (median time={best_time:.6f}s) —> {recovered!r}")
return recovered

Side-Channel Attack: Non-Constant Time Op

Side-Channel Attack: Non-Constant Time Op

IanIt /
u > Program
- ,
_—

P
Output
(Feedback)

Indirect Feedback: Execution Time

| T

Two Stage Login: Step 1

G

Sig n in Email or phone ’

Use your Google Account

Forgot email?

Single Step Login

Not your computer? Use Private Browsing windows to sign in. Learn

more about using Guest mode

Y Create account
& Username

Password Forgot password?
0L

Two Stage Login: Step 2

G

Welcome

@ machine.programming.jhu.fa25.b@gmail.com v)

Enter your password ’

[J show password

Forgot password?

Mitigation: Constant-Time Operations

C Program

Non-Constant Time | if (secret) x = e

C Program

ConstantTime | x = (-secret & e) | (secret - 1) & x

FaCT: ADSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

Mitigation: Constant-Time Operations

C Program

for (j = 0; j < md_block_size; j++, k++) {
if (is_past_c) {
b = 0x80;
} else {
b = datalk - header_length];

Non-Constant Time by

if (is_past_cpl || (is_block_b && !is_block_a)) {
b = 0;
}
block[j] = b;
}
C Program l

for (j = 0; j < md_block_size; j++, k++) {
b datalk - header_length];
b constant_time_select_8(is_past_c, 0x80, b);
Constant Time b =b & ~is_past_cp1;
b & ~is_block_b | is_block_a;
block[j]l = b;

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

Mitigation: Constant-Time Operations

C Program

for (j = 0; j < md_block_size; j++, k++) {
if (is_past_c) {
b = 0x80;
} else {
b = datalk - header_length];

Non-Constant Time L
if (is_past_cpl || (is_block_b && !is_block_a)) {
b = 0;
}
blockl[j]

Are we trusting Human/LLM to write this correctly?

C Program

for (j = 0; j < md_block_size; j++, k++) {
b datalk - header_length];
b constant_time_select_8(is_past_c, 0x80, b);
Constant Time b =b & ~is_past_cp1;
b & ~is_block_b | is_block_a;
block[j]l = b;

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

Mitigation: Constant-Time Operations

C Program

for (j = 0; j < md_block_size; j++, k++) {
if (is_past_c) {
h = Ax8Q-

CWE-208: Observable Timing Discrepancy

Weakness ID: 208
Vulnerability Mapping: ALLOWED

lock_a)) {

Abstraction: Base

TUCTUCTINL T — Wy

Are we trusting Human/LLM to write this correctly?

C Program

for (j = 0; j < md_block_size; j++, k++) {
b datalk - header_length];
b constant_time_select_8(is_past_c, 0x80, b);
Constant Time b =b & ~is_past_cp1;
b & ~is_block_b | is_block_a;
block[j]l = b;

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

Mitigation: Constant-Time Operations

C Program

for (j = 0; j < md_block_size; j++, k++) {

AXCVE-2024-31074 Detail
AWAITING ANALYSIS

This CVE record has been marked for NVD enrichment efforts.

Description

Observable timing discrepancy in some Intel(R) QAT Engine for OpenSSL software before version v1.6.1 may allow information disclosure via
network access.

9] = UdUldLK neaucT _1crigLrig,

b constant_time_select_8(is_past_c, 0x80, b);
Constant Time b =b & ~is_past_cp1;

b & ~is_block_b | is_block_a;

block[j]l = b;

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

FaCT: A DSL for Timing-Sensitive Computation

Sunjay Cauligi
UC San Diego, USA

Fraser Brown
Stanford, USA

Benjamin Grégoire
INRIA Sophia Antipolis, France

Gary Soeller
UC San Diego, USA

Riad S. Wahby
Stanford, USA

Gilles Barthe
MPI for Security and Privacy,
Germany
IMDEA Software Institute, Spain

Deian Stefan
UC San Diego, USA

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

Brian Johannesmeyer
UC San Diego, USA

John Renner
UC San Diego, USA

Ranjit Jhala
UC San Diego, USA

Fal

Be

PROCEDURE DEFINITIONS

fef =
| f&: ﬁ) {S}:B internal procedure
| export f(*:) {S}:B exported procedure
| extern f(X: ﬁ) : B external procedure
STATEMENTS
S u=

| S;S sequence

| Bx=e variable declaration

| Bx=f(e procedure call

| e:=e assignment

| if(e){S}else{S} conditional

| for (x frometoe) {S} range-for

| returne return

EXPRESSIONS
e =

| true| false boolean literal
| n numeric literal
| x variable
| ©e unary op
| ede binary op
| ele] array get
| lene array length
| zeros(f,e) zero array
| clone(e) array clone
| view(e,e,e) array view
| declassify(e) declassify
| assume(e) assume
| refe reference
| derefe dereference
|

ctselect(e,e,e) constant-time selection

Figure 1. (Subset of) FaCT grammar.

ymputation

rian Johannesmeyer
UC San Diego, USA

John Renner
UC San Diego, USA

Ranjit Jhala
UC San Diego, USA

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

FaCT: A DSL for Timing-Sensitive Computation

Sunjay Cf 5, capoms permrrions Brian Johannesmeyer
UC San Dief figef = SA UC San Diego, USA
| fG: ﬁ) {S} : B internal procedure
Fraser B1 | export f(¥: /i) {S}:B exported procedure y John Renner
Stanford, | extern f(X: - * *
STATEMENTS * . .
peniamin ¢ =" | Table 3. Number of participants (out of 77) that submit-
INRIA Sophia Ant ;
Px=e

- | ted correct and constant-time solution for each task. The
if () {S}els

~e= check_pkcs7_padding task was misconfigured, and marked

-z | variable-time code as constant-time (16 submissions); we re-
: | port these numbers for completeness (§5.2.2).

‘(:)1 Programming task FaCT C

crastee remove_secret_padding | 62 49

e G0 check_pkcs7_padding 35 32 (16)
remove_pkcs7_padding 34 24

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

FaCT: A DSL for Timing-Sensitive Computation

[
L; fdef =

fGE:P{S):p ir
exnort f(¥ - R LS

}y Soeller Brian Johannesmeyer

Be

e T
=

) Table 3. N
s = | ted correct
check_pkc
variable-tir
" port these

P
r
c
r

rerTe
deref e
ctselect(e, e, €)

—_————————————ii &
Z
2

ICICICIICE
dereferen
constant-

Figure 1. (Subset of) FaCT gr¢

Acknowledgments

We thank the anonymous PLDI and PLDI AEC reviewers and
our shepherd Limin Jia for their suggestions and insightful
comments. We thank the participants of the Dagstuhl Semi-
nar on Secure Compilation for early feedback on this work,
especially Tamara Rezk. We thank Ariana Mirian for han-
dling the IRB for our user study, Shravan Narayan for his help
in understanding the subtleties of LLVM, and Joseph Jaeger
and Jess Sorrell for helping us understand elliptic curve im-
plementations. We also thank the CSE 130 TAs for their help
in testing our user study, and the CSE 130 students for partic-
ipating in the user study. This work was supported in part by
gifts from Fuyjitsu and Cisco, by the National Science Foun-

FaCT: A DSL for Timing-Sensitive Computation, Cauligi et. al., PLDI 2019

Programmer Gives to Sends to Produces...

Shallow [] [_]
Compiler & | Analyzer - Potentially Safe Program

It X X

- [Potentially Bad Program] —

Programmer Gives to Produces...

— [Potentially Bad Program]—»[C(?rtr::acirer L—>[Safe Program]
T

Takeaway

* There are many generally used languages with different safety features: memory safety,
concurrency safety, smart-contract safety, ...

* |Instead of writing buggy code and use analysis tools to detect and fix them afterwards, we
may thatis
* The language may be more limiting, but is safer
* A good safe language mitigates the limitations well and is fast

* We want to ask LLM to write programs in ges

* |t maybe to get the compiler to , but the compiled program
already has

 E.g., Generate Rust>C
* E.g., Generate TypeScript > JavaScript

Desired Program

LN

Programs
that are X
SAFE

Functional

0

.,
Ca

s Constraints -

euuy

Programs
matching the
~examples

“~ ...:‘.-" Checked a-u.
‘the types .

wes®

DELTI

Space of all

Space of all
the strings

valid programs

Logistics — Week 10

* Oral Presentations
* Emails are being sending out; plans established
* Attendance will be noted down for oral presentation sessions!

* Final Projects
* Final project proposal: 1 page PDF (due on Sunday)
 Submit on GradeScope
* Send email to the instructor questions

