Machine Programming

Lecture 6 - Decoding and Prompting for Program Synthesis
Ziyang Li

Dimensions in Program Synthesis

Behavioral Specification

4 - Whatshould the program do?

\

Synthesis Strategy Structural Specification
How do we find such a program? - Whats the space of the programs?

The Course So Far

Behavioral Specification
- What should the program do?

Examples

Types

Functional Specifications
Natural Language

Synthesis Strategy \

- How do we find such a program? Structural Specification
- What s the space of the programs?

ONM=

Enumeration

- Enumerating all programs with a grammar General Purpose Programming Language
Python/Java/C/Rust/ ...
- Bottom-up vs top-down

Data-Driven Approaches
- Modeling programs as token sequences
- Modeling synthesis as next token prediction

Today

Behavioral Specification

4 - Whatshould the program do?

Examples

Types

Functional Specifications
Natural Language

\

Structural Specification
- What s the space of the programs?

hobd=

Synthesis Strategy
- How do we find such a program?

Enumeration
- Enumerating all programs with a grammar
- Bottom-up vs top-down

General Purpose Programming Language
Python/Java/C/Rust/ ...

Data-Driven Approaches
- Modeling programs as token sequences
- Modeling synthesis as next token prediction

High Level Picture

Desired Program

Space of all
/ the strings

High Level Picture

Desired Program

Space of all syntactically
correct programs |
\

Space of all
the strings

High Level Picture

Desired Program

Space of all syntactically
correct programs

Space of all
the strings

High Level Picture

Desired Program

Space of all type checked
programs

Space of all syntactically
correct programs

Space of all
the strings

High Level Picture

Desired Program

Space of all
programs that can

programs

Space of all syntactically
correct programs

Space of all
the strings

High Level Picture

Desired Program

programs

Space of all syntactically
correct programs

Space of all
the strings

High Level Picture

Spaceé of all
progrants that can
satisfy ali examples

cification
~

Space of all type-checked
_programs

Space of all syntactically
correct programs

Space of all
the strings

Desired Program

Today

Behavioral Specification
4 - Whatshould the program do?

Examples

Types

Functional Specifications
Natural Language

\

Structural Specification
- What s the space of the programs?

hobd=

Synthesis Strategy

- How do we find such a program?
General Purpose Programming Language

Language Model Decoding Python /Java/ C /Rust/

- Chaining next token prediction

What’s Next from Next Token Prediction

Problem Definition:

Input: X = Xq1,X9, e, X Output: Vi

Input: Y1, Y2, Yi-1
Goal: Compute the probability

What’s Next from Next Token Prediction

Problem Definition:

Input: X = Xq1,X9, e, X Output: Vi

Input: Y1, Y2, Yi-1
Goal: Compute the probability

Chaining next token predictions:

[for, i, in] >
[for, i, in, range]l =>
[for, i, in, range, (] >
[for, i, in, range, (, 10] >
[for, i, in, range, (, 10,)] >

What’s Next from Next Token Prediction

Chaining next token predictions:

[for, i, in] >
[for, i, in, range]l =
[for, i, in, range, (] >
[for, i, in, range, (, 10] >
[for, i, in, range, (, 10,)] >

What’s Next from Next Token Prediction

Chaining next token predictions:

[for, i, in] >
[for, i, in, range]l =>
[for, i, in, range, (] =
[for, i, in, range, (, 10] >
[for, i, in, range, (, 10,)] >

[for, i, in, range, .., print, (, i,)] =>

What’s Next from Next Token Prediction

Problem Definition:

Input: X = X1,Xp,.-,Xn| Output: Y=YV1.Y2,Vm

Goal: Get the output v from

from transformers import AutoModelForCausallLM, AutoTokenizer

tok = AutoTokenizer.from_pretrained('"gpt2")

model = AutoModelForCausalLM. from_pretrained("gpt2")
inputs = tok("def add(a, b):", return_tensors="pt")
logits = model(xxinputs).logits

probs = logits.softmax(-1)
print(tok.decode(probs[0, -1].topk(5).indices))

from transformers import AutoModelForCausallM, AutoTokenizer

tok

= AutoTokenizer.from_pretrained("gpt2")
model =

AutoModelForCausalLM. from_pretrained("gpt2")

inputs = tok("def add(a, b):", return_tensors="pt")
logits = model(xxinputs).logits

probs = logits.softmax(-1)
print(tok.decode(probs[0, -1].topk(5).indices))

Top 5 Tokens: [“\n”" , “return”, “#” , “if” , "“a”]
Top 5 Token IDs: [198 , 1441 , 1303 , 611 , 257]
Top 5 Token Probabilities: [0.1946, 0.1221 , 0.0448, 0.0425, 0.0416]

What’s Next from Next Token Prediction

Problem Definition: Sequential Decoding

Input: Input Sequence X = Xq1,X3, ..., Xn Output: Output Sequence

Goal: Get the output y from Pr(y | x)

Y=YV Ym

current_sequence = 1nput_tokens
output_sequence = []
for step in 1 .. max_length:

next_token = argmax(probs)

current_sequence += [next_token]

output_sequence += [next_token]

if next_token == <E0S>: break
return output_sequence

probs = softmax(predict_next_token(current_sequence))

What’s Next from Next Token Prediction

Problem Definition: Sequential Decoding

Input: Input Sequence X = Xq1,X3, ..., Xn

Goal: Get the output y from Pr(y | x)

Output: Output Sequence Y = V41, V2,) Vm

current_sequence = 1nput_tokens
output_sequence = []
for step in 1 .. max_length:

next_token = argmax(probs)

current_sequence += [next_token]

output_sequence += [next_token]

if next_token == <E0S>: break
return output_sequence

probs = softmax(predict_next_token(current_sequence))

Greedy Decoding: Take Top-1 Prediction]

Decoding: Sampling vs Greedy

Greedy

logits = predict_next_token(current_sequence) / temperature
probs = softmax(logits)
next_token = sample_from(probs)

Sampling

Decoding: Sampling vs Greedy

Greedy

logits = predict_next_token(current_sequence) / temperature
probs = softmax(logits)
next_token = sample_from(probs)

Sampling

Load a preset... v Save View code Share

Mode
ntelligent, sarcastic and funny. ¢
= Complete v
Model
le, I'm surprisingly upbeat. Must be my radiant

text-davinci-003 V2

Controls randomness: Lowering results
in less random completions. As the

Tdmperature
ke acooking clas {emperature approaches zero, the <mp
model will become deterministic and O
repetitive. :
Maximum length 256
O

Stop sequences
Enter sequence and press Tab

Top P £ &
O
Frequency penalty 0

R @

ke a cooking clas

Load a preset... Save

telligent, sarcastic and funny. ¢

le, I'm surprisingly upbeat. Must be my radiant

Controls randomness: Lowering results
in less random completions. As the
temperature approaches zero, the
model will become deterministic and
repetitive.

View code Share

Mode

= Complete

Model

text-davinci-003

Tdmperature 0

Maximum length 256

Stop sequences
Enter sequence and press Tab

Top P 1

Frequency penalty : ‘0.
125 [P
— b

logits = predict_next_token(current_sequence)
adjusted = logits / temperature
probs = softmax(adjusted)

temp = 1: original distribution after softmax
temp > 1: flatter distribution
temp < 1:sharper distribution

[Setting temperature to 0 removes randomness T

7 How can it be 0?]

Defeating Nondeterminism in
LLM Inference

Horace He in collaboration with others at Thinking Machines
Sep 10, 2025

https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/

https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/

Decoding: Practical Implementation

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
logits = predict_next_token(current_sequence)
it temperature ==
next_token = argmax(softmax(logits))
else:
probs = softmax(logits / temperature)
next_token = sample_from(probs)
current_sequence += [next_token]
output_sequence += [next_token]
if next_token == : break
return output_sequence

Mode

& Chat Beta v
Model
apt-4 %
Controls randomness: Lowering results
in less random completions. As the
Temperature 2
temperature approaches zero, the
model will become deterministic and a O
repetitive.)
Maximum length 2048
O
Top P 1
O
Frequency penalty 0
O
Presence penalty 0

O

Mode

& Chat Beta v
Model
apt-4 %
Controls randomness: Lowering results
in less random completions. As the
Temperature 2
temperature approaches zero, the
model will become deterministic and n O
repetitive.)
Maximum length 2048
O
Top P 1
O
Frequency penalty 0
O
Presence penalty 0

O

Decoding: Practical Implementation

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
logits = predict_next_token(current_sequence)
it temperature ==
next_token = argmax(softmax(logits))

else:
probs = softmax(logits / temperature)

next_token = sample_from(probs)
current_sequence += [next_token]
output_sequence += [next_token]
if next_token == or len(output_sequence) > MAX_LEN: break

return output_sequence

Decoding: Practical Implementation

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
logits = predict_next_token(current_sequence)
it temperature ==
next_token = argmax(softmax(logits))

else:
probs = softmax(logits / temperature)

next_token = sample_from(probs)
current_sequence += [next_token]
output_sequence += [next_token]
if next_token == <E0S> or|len(output_sequence) > MAX_LEN: break

return output_sequence

Mode

& Chat Beta v
Model
apt-4 %
Controls randomness: Lowering results
in less random completions. As the
Temperature 2
temperature approaches zero, the
model will become deterministic and n O
repetitive.)
Maximum length 2048
O
Top P 1
O
Frequency penalty 0
O
Presence penalty 0

O

Mode

& Chat Beta v
Model
apt-4 %
Controls randomness: Lowering results
in less random completions. As the
Temperature 2
temperature approaches zero, the
model will become deterministic and n O
repetitive.)
Maximum length 2048
O
Top P 1
O
Frequency penalty 0
O
Presence penalty 0

O

THE CURIOUS CASE OF
NEURAL TEXT DeGENERATION

Ari Holtzman'? Jan Buys®! Li Du' Maxwell Forbes'* Yejin Choi'*
TPaul G. Allen School of Computer Science & Engineering, University of Washington
tAllen Institute for Artificial Intelligence
§Department of Computer Science, University of Cape Town
{ahai,dul2,mbforbes, yejin}@cs.washington.edu, jbuys@cs.uct.ac.za

THE CURIOUS CASE OF
NEURAL TEXT DeGENERATION

Ari Holtzman'? Jan Buys'! Li Duf Maxwell Forbes'* Yejin Choi'*
TPaul G. Allen School of Computer Science & Engineering, University of Washington
tAllen Institute for Artificial Intelligence

iDepartment of Computer Science, University of Cape Town
{ahai,dul2,mbforbes, yejin}@cs.washington.edu, jbuys@cs.uct.ac.za

Context: In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley,
in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

Beam Search, b=32: Pure Sampling:

"The study, published in the Proceedings of the They were cattle called Bolivian Cavalleros; they live in a
National Academy of Sciences of the United States of remote desert uninterrupted by town, and they speak huge,
America (PNAS), was conducted by researchers from the beautiful, paradisiacal Bolivian linguistic thing. They say,
Universidad Nacional Auténoma de México (UNAM) and ‘Lunch, marge.' They don't tell what the lunch is," director

the Universidad Nacional Auténoma de México Professor Chuperas Omwell told Sky News. "They've only
(UNAM/Universidad Nacional Auténoma de been talking to scientists, like we're being interviewed by TV
México/Universidad Nacional Auténoma de reporters. We don't even stick around to be interviewed by
México/Universidad Nacional Auténoma de TV reporters. Maybe that's how they figured out that they're

México/Universidad Nacional Auténoma de ... cosplaying as the Bolivian Cavalleros."

Figure 1: Even with substantial human context and the powerful GPT-2 Large language model,
Beam Search (size 32) leads to degenerate repetition (highlighted in blue) while pure sampling
leads to incoherent gibberish (highlighted in red). When b > 64, both GPT-2 Large and XL (774M
and 1542M parameters, respectively) prefer to stop generating immediately after the given context.

Decoding: Nucleus Sampling (Top-P

0.08

L thought =

She

said

knew mm
had N
saw
did mam
said
wanted
never told pum
liked pum

got mm

Distribution

would g
heard g
want gy

meant gy

could m

ate the pizza

Peaked

Distribution <

0.8
R ——
cooling N :
warm [l
on B
heating Wl
fresh |
cold |
warming |
burning |
cooking |
baking |
in |
cool |
going |
n't |

Decoding: Nucleus Sampling (Top-P)

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
logits = predict_next_token(current_sequence) / temperature
probs = softmax(logits)
next_token = nucleus_sample_from(probs, P)
current_sequence += [next_token]
output_sequence += [next_token]
if next_token == : break
return output_sequence

Decoding: Nucleus Sampling (Top-P)

next_ token

= nucleus_sample_from(probs, P)

def nucleus_sample_from(probs, P):
sorted_probs, sorted_indices = sort_desc(probs)
cumulative = cumsum(sorted_probs)
cutoff_idx = index of first(cumulative >= P)
candidate_indices = sorted indices[@:cutoff_idx]
candidate_probs = normalize(sorted_probs[0Q:cutoff_idx]
return random_choice(candidate_indices, p=candidate_probs)

Decoding: Nucleus Sampling (Top-P)

def nucleus_sample_from(probs, P):
sorted_probs, sorted_indices = sort_desc(probs)
cumulative = cumsum(sorted_probs)
cutoff_idx = index of first(cumulative >= P)
candidate_indices = sorted indices[@:cutoff_idx]
candidate_probs = normalize(sorted_probs[0:cutoff_idx]
return random_choice(candidate_indices, p=candidate_probs)

probs

t
@ @| P @
sort_desc cumsum index_of_first candidate_indices normalize

sampled

Mode

& Chat Beta v
Model
apt-4 %
Controls randomness: Lowering results
in less random completions. As the
Temperature 2
temperature approaches zero, the
model will become deterministic and n O
repetitive.)
Maximum length 2048
O
Top P 1
O
Frequency penalty 0
O
Presence penalty 0

O

High Level Picture |
Language model can generate syntactically bad program

Fuzzy Desired Program
Specification

: P 4
Spaceofall #
programs that c
satisfy ali examples
. \

Space of all syntactically’”
correct programs

Space of all
the strings

Decoding in the Wild

PLANNING WITH LARGE LANGUAGE MODELS

FOR CODE GENERATION

mar-Constrained Decoding
Shun Zhang, Zhenfang Chen, Yikang Shen Mingyu Ding

MIT-IBM Watson Al Lab The University of Hong Kong

Joshua B. Tenenbaum
MIT BCS, CBMM, CSAIL

Grammar-Aligned Decoding

SYNTACTIC AND SEMANTIC CONTROL OF LARGE
LANGUAGE MODELS VIA SEQUENTIAL MONTE CARLO

ick?

Jodo Loula*! Benjamin LeBrun*> Li Du*® Ben Lipkin' Clemente Pasti> Gabriel Grand! | San Diego
Tianyu Liu?> Yahya Emara’ Marjorie Freedman® Jason Eisner® Ryan Cotterell va}@ucsd. edu
Vikash Mansinghka'! Alexander K. Lew?!:” Tim Vieira*> Timothy J. O’Donnell#?:4:3

IMIT 2ETH Ziirich *McGill “Canada CIFAR AI Chair °Mila ®Johns Hopkins ’Yale B3ISI
genlm@mit.edu

PLANNING WITH LARGE LANGUAGE MODELS
FOR CODE GENERATION

Shun Zhang, Zhenfang Chen, Yikang Shen Mingyu Ding
MIT-IBM Watson Al Lab The University of Hong Kong
Joshua B. Tenenbaum Chuang Gan
MIT BCS, CBMM, CSAIL UMass Amherst, MIT-IBM Watson Al Lab
— Selection » Expansion » Evaluation —— Backpropagation ——
<PD> <PD> <PD> <PD>
; /\" ; /\" 2 /\" ; /\"
a X a .. X a X a X
—/ I ’ -’ \l.— f l ’ —/\I J ’ _/\I l ’
a= X, = a, X, a= a, X, a= a, X,
E suggests next tokens /\
B9 4 L a,b a,\n Evaluat
m . : :) Evaluate on
Transformer 78 DR == public test cases
generates complete programs oo R
using beam search

Decoding

Problem Definition: Decoding

Input: Input Sequence X = Xq1,X3, ..., Xn

Goal: Get the output y from Pr(y | x)

Output: Output Sequence

Y=YV Ym

Decoding for Code Completion

Problem Definition: Decoding

Input: Input Sequence X = Xq1,X3, ..., Xn

Goal: Get the output y from Pr(y | x)

Output: Output Sequence

Y=YV Ym

[for, i, in] = range
[for, i, in, range]l > (
[for, i1, in, range, (] => 10

[for, i, in, range, (, 10] =>)
[for, i, in, range, (, 10,)] > :

[for, i, in, range, .., print, (, i,

)] > <EO0S>

Code Completion =2 Code Generation

Problem Definition: Code Generation

Input: Input Sequence

X=X1,X2,..,Xn

Goal: Get the output y from Pr(y | x)

Output: Output Sequence

Y=YV Ym

x | def auto_complete(program: str) —> str:

Code Generation

Input: Input Sequence X = Xq,X3, ..., Xp Output: Output Sequence Y = Y4, V2,) Ym

Goal: Get the output y from Pr(y | x)

x | def auto_complete(program: str) —> str:

y # Simple rule-based auto-completion for demonstration
program = program.strip()
if program.startswith("for ") and " in " in program and not program.endswith(":"):
Complete a for loop
var = program.split("for ") [1].split(" in ") [0].strip()
return f"range(10):\n\tprint({var})<EQS>"
elif program.startswith("def ") and program.endswith("("):
Complete a function definition
func_name = program[4:-1].strip()
return f"):\n\tpass<E0S>"
else:
return "<EQS>"

Better Code Generation via Prompting

Input: Input Sequence X = Xq,X3, ..., Xp Output: Output Sequence Y = Y4, V2,) Ym

Goal: Get the output y from Pr(y | x) =» Pr(y | prompt(x))

X

Write me a function that takes in a string representing a
partial program and output the auto—-completed rest

#

e.g. "for i in " —> "range(10):\n\tprint(i)<E0S>"

def auto_complete(program: str) —> str:

Simple rule-based auto-completion for demonstration
program = program.strip()
if program.startswith("for ") and " in " in program and not program.endswith(":"):
Complete a for loop
var = program.split("for ") [1].split(" in ")[@].strip()
return f"range(10):\n\tprint({var})<E0S>"
elif program.startswith("def ") and program.endswith("("):
Complete a function definition
func_name = program[4:-1].strip()
return f"):\n\tpass<E0S>"
else:
return "<EQS>"

Prompting

Pr(y |x) =2 Pr(y|prompt(x))

prompt: str -> str

Prompting prompt: str —> str

lambda func_signature: f"""

You are a Meta programmer. Write this function to spec,
elegantly and without bugs.

{func_signature}

lambda func_signature: f"""

elegantly and without bugs.
{func_signature}

You are a Google engineer. Write this function to spec,

lambda func_signature: f"""

You are a high school student learning about Computer Science.
Attempt to write this function

{func_signature}

lambda func_signature: f""" lambda func_signature: f"""

You are a Meta programmer. Write this You are a high school student learning
function to spec, elegantly and without about Computer Science. Attempt to write
bugs. this function

{func_signature} {func_signature}

lambda func_signature: f"""
You are a Meta programmer. Write this
function to spec, elegantly and without

bugs.
{func_signature}

lambda func_signature: f"""

You are a high school student learning
about Computer Science. Attempt to write
this function

{func_signature}

[K-Periodic Segmentation & o = O} ® Export to Colab < X
You are a Meta Programmer. o
write this function to spec, 1 from typing import List m
elegantly and without bugs... 2 R
3 def min_cost_k_periodic_segmentation(s: str, k: int, max_blocks: int, cost: List[int]) -> ir
4
5 Calculates the minimum cost to segment a string into at most ‘max_blocks
* 6 k-periodic segments with weighted edits.
7
1 will write the function 8 A segment is considered k-periodic if it can be formed by repeating a
. o . 9 substring of length k. The cost of a segment is the sum of weighted edits
min_cost_k_periodic_segmentation to the 10 (given by the ‘cost’ list) needed to make it k-periodic.
specified requirements. The problem appears to 11
be a dynamic programming challenge. The core 12 Args:
. . N . 13 s (str): The input string to be segmented.
ideais to find the minimum cost to segment a 14 k (int): The period for the segments. Must be a positive integer.
string into a limited number of k -periodic 15 max_blocks (int): The maximum number of segments allowed.
blocks, where the cost of each block is the sum of 16 cost (List[int]): A list where ‘cost[i] is the cost of editing the
. 5 R . L 17 character at index "i’ of the original string 's’.
weighted edits required to make it k -periodic. 18
o . 19 Returns:
My approach will involve two main steps: 20 int: The minimum cost of segmentation. Returns -1 if no valid
1. Pre-computation: | will create a table to ;; . segmentation is possible within the given constraints.
pre-calculate the cost of making any 23 n = len(s)
substring of the input string s intoa k - 24
P P s 25 if k <= 0
periodic segment. A substring is k -periodic . . o
o 26 raise ValueError("The period k must be a positive integer.")
if it repeats a pattern of length k . The cost 27 if max_blocks <= 0:
is the sum of cost[i] for each character 28 return @ if n == 0 else -1
. 8 . . 29
s[i] that doesn't match its corresponding
) . 30 # Pre-compute the cost of making any substring s[p:i] k-periodic.
character in the k -length pattern. This pre- 31 # segment_cost[p][length] = cost of making s[p : p+length] k-periodic.
computation will be done efficiently in 32 segment_cost = [[@] * (n + 1) for _ in range(n)]
. . 33 i i :
O(n?) time, where n is the length of the & i FEnE)
X 34 current_cost = @
string. 35 for i in range(p + 1, n + 1):
. P 36 # Length of the current segment is (i - p)
2. Dynamic Prerammmg'lwm usea2DDP 37 # Character index in the original string: i - 1
table, dp[i][j], to store the minimum cost 38 # Character index in the periodic pattern (relative to start of segment p): (i -
to segment the first i characters of the 39 if s[i - 1] t=slp+ (1 - 1 -p) % kl:
Lo A 40 current_cost += cost[i - 1]
string into exactly i blocks. The recurrence .
41 segment_cost[p][i - p] = current_cost
What do you want to build? 2
43 # Initialize DP table.
N = . 44 # dp[i][j] = min cost to segment the first i characters into j blocks.
+ % ® Canvas X v 45 dp = [[float('inf')] * (max_blocks + 1) for _ in range(n + 1)]

Anf21r21 - 0

You are a high school student who barely knows any
computer science. Attempt to write this function

4 Hey, solike, I'm just a high school student, and I've barely taken any computer science classes,

but I'll give this a shot! It sounds kinda complicated, but here's my best attempt at this problem.

B

This problem looks like it's trying to find the cheapest way to break up a string into a bunch of
chunks, where each chunk has a length of either k or k+1. I'm guessing we also have some kind of
cost for each character, which is what the cost listis for. The max_blocks thing probably
means we can't have too many of these chunks.

lambda func_signature: f"""
You are a Meta programmer. Write this
function to spec, elegantly and without

bugs.
{func_signature}

lambda func_signature: f"""

You are a high school student learning
about Computer Science. Attempt to write
this function

{func_signature}

[@ K-Periodic Segmentation & © o B 9 ® Export to Colab < X
You are a Meta Programmer. o
write this function to spec, 1 from typing import List m
elegantly and without bugs... 2 R
3 def min_cost_k_periodic_segmentation(s: str, k: int, max_blocks: int, cost: List[int]) -> ir
4
5 Calculates the minimum cost to segment a string into at most ‘max_blocks
* 6 k-periodic segments with weighted edits.
7
1 will write the function 8 A segment is considered k-periodic if it can be formed by repeating a
. o . 9 substring of length k. The cost of a segment is the sum of weighted edits
min_cost_k_periodic_segmentation to the 10 (given by the ‘cost’ list) needed to make it k-periodic.
specified requirements. The problem appears to 11
be a dynamic programming challenge. The core 12 Args:
. . N . 13 s (str): The input string to be segmented.
ideais to find the minimum cost to segment a 14 k (int): The period for the segments. Must be a positive integer.
string into a limited number of k -periodic 15 max_blocks (int): The maximum number of segments allowed.
blocks, where the cost of each block is the sum of 16 cost (List[int]): A list where ‘cost[i] is the cost of editing the
. 5 R . L 17 character at index "i’ of the original string 's’.
weighted edits required to make it k -periodic. 18
o . 19 Returns:
My approach will involve two main steps: 20 int: The minimum cost of segmentation. Returns -1 if no valid
1. Pre-computation: | will create a table to 2 . segmentation is possible within the given constraints.
pre-calculate the cost of making any 23 n = len(s)
substring of the input string s intoa k - 24
P P s 25 if k <= 0
periodic segment. A substring is k -periodic . . o
o 26 raise ValueError("The period k must be a positive integer.")
if it repeats a pattern of length k . The cost 27 if max_blocks <= 0:
is the sum of cost[i] for each character 28 return @ if n == 0 else -1
8 . . 29
s[i] that doesn't match its corresponding . . . o
. X 30 # Pre-compute the cost of making any substring s[p:i] k-periodic.
character in the k -length pattern. This pre- 31 # segment_cost[p][length] = cost of making s[p : p+length] k-periodic.
computation will be done efficiently in 32 segment_cost = [[@] * (n + 1) for _ in range(n)]
. . 33 i i :
O(n?) time, where n is the length of the & i FEnE)
X 34 current_cost = @
string. 35 for i in range(p + 1, n + 1):
. PN 36 # Length of the current segment is (i - p)
2. Dynamic Programmlng.lwﬂl usea2DDP 37 # Character index in the original string: i - 1
table, dp[i][j], to store the minimum cost 38 # Character index in the periodic pattern (relative to start of segment p): (i -
to segment the first i characters of the 39 if s[i - 1] t=slp+ (1 - 1 -p) % kl:
Lo A 40 current_cost += cost[i - 1]
string into exactly i blocks. The recurrence .
41 segment_cost[p]l[i - p] = current_cost
What do you want to build? 42
43 # Initialize DP table.
N = . 44 # dp[i][j] = min cost to segment the first i characters into j blocks.
+ % ® Canvas X v 45 dp = [[float('inf')] * (max_blocks + 1) for _ in range(n + 1)]

Anf21r21 - 0

Honestly, I have no clue how to actually write this code.

The logic seems like it would be some sort of dynamic programming,
but I'm not familiar enough with it to actually implement it.
Maybe you could use a DP table like dp[i][j] to store the min cost
to segment the first i characters using j blocks?

H OH B R &

This is my best guess at the pseudocode.
Not real code, just me trying to think it through.

dp = [[infinity] * (max_blocks + 1) for _ in range(len(s) + 1)]
dp[e][e] = @

for i in range(1, len(s) + 1):

for j in range(1, max_blocks + 1):

Option 1: Last block has length k

if i >= k:

cost_k = sum(cost[i-k:i]) # This is probably not how you'd do it
dp[i][j] = min(dp[il[j], dp[i-k1[j-1] + cost_k)

Option 2: Last block has length k+1

if i >= k + 1:

cost_k_plus_1 = sum(cost[i-(k+1):i])

dp[i][j] = min(dp[il[j], dp[i-(k+1)]1[j-1] + cost_k_plus_1)

result = min(dp[len(s)]) # The minimum cost for any number of blocks up to m
return result

P.S. I'm probably wrong about a lot of this. Sorry! &
return @ # Just returning @ so the function doesn't error out.

lambda func_signature: f"""
You are a Meta programmer. Write this
function to spec, elegantly and without

bugs.
{func_signature}

lambda func_signature: f"""

You are a high school student learning
about Computer Science. Attempt to write

this function
{func_signature}

[K-Periodic Segmentation & © o B 9 ® Export to Colab < X
You are a Meta Programmer. o
write this function to spec, 1 from typing import List m
elegantly and without bugs... z . o . . .) k
3 def min_cost_k_periodic_segmentation(s: str, k: int, max_blocks: int, cost: List[int]) -> ir
4
5 Calculates the minimum cost to segment a string into at most ‘max_blocks
* 6 k-periodic segments with weighted edits.
7
1 will write the function 8 A segment is considered k-periodic if it can be formed by repeating a
. o . 9 substring of length k. The cost of a segment is the sum of weighted edits
min_cost_k_periodic_segmentation to the 10 (given by the ‘cost’ list) needed to make it k-periodic.
specified requirements. The problem appears to 11
be a dynamic programming challenge. The core 12 Args:
. . N . 13 s (str): The input string to be segmented.
ideais to find the minimum cost to segment a 14 k (int): The period for the segments. Must be a positive integer.
string into a limited number of k -periodic 15 max_blocks (int): The maximum number of segments allowed.
blocks, where the cost of each block is the sum of 16 cost (List[int]): A list where ‘cost[i] is the cost of editing the
. 5 R . L 17 character at index "i’ of the original string 's’.
weighted edits required to make it k -periodic. 18
" . 19
My approach will involve two main steps: 20 ost of segmentation. Returns -1 if no valid
. o 21 i ible within the gi traints.
1. Pre-computation: | will create a table to o On 1s possible within the given constraints
pre-calculate the cost of making any 23
substring of the input string s intoa k - 24
P P s 25 :
periodic segment. A substring is k -periodic . o
o 26 ralse ValueError("The period k must be a positive integer.")
if it repeats a pattern of length k . The cost 27 if max_blocks <= 0:
is the sum of cost[i] for each character 28 r i = 0 else -1
. 8 . . 29
s[i] that doesn't match its corresponding

) . 30 # pre e cost of making any substring s[p:i] k-periodic.
character in the k -length pattern. This pre- 31 # segment_cost[p][length] = cost of making s[p : p+length] k-periodic.
computation will be done efficiently in 32 segment_cost = [[@] * (n + 1) for _ in range(n)]

. . 33 i i :
O(n?) time, where n is the length of the & i FEnE)
X 34 current_cost = @
string. 35 for i in range(p + 1, n + 1):
. P 36 # Length of the current segment is (i - p)
2. Dynamic Prerammmg'lwm usea2DDP 37 # Character index in the original string: i - 1
table, dp[i][j], to store the minimum cost 38 # Character index in the periodic pattern (relative to start of segment p): (i -
to segment the first i characters of the 39 if s[i - 1] t=slp+ (1 - 1 -p) % kl:
Lo A 40 current_cost += cost[i - 1]
string into exactly i blocks. The recurrence .
41 segment_cost[p][i - p] = current_cost
What do you want to build? 2
43 # Initialize DP table.
N = . 44 # dp[i][j] = min cost to segment the first i characters into j blocks.
+ % ® Canvas X v 45 dp = [[float('inf')] * (max_blocks + 1) for _ in range(n + 1)]

Anf21r21 - 0

H OH B R &

H OB B R BB

H H B B

#

Honestly, I have no clue how to actually write this code.

The logic seems like it would be some sort of dynamic programming,
but I'm not familiar enough with it to actually implement it.
Maybe you could use a DP table like dp[i][j] to store the min cost
to segment the first i characters using j blocks?

This is my best guess at the pseudocode.
Not real code, just me trying to think it through.

dp = [[infinity] * (max_blocks + 1) for _ in range(len(s) + 1)]
dp[e][e] = @

for i in range(1, len(s) + 1):
for j in range(1, max_bl
Option 1: Last bloc
if i >= k:
cost_k = sum(cos:
dp[i][j] = min(dp

Option 2: Last blockos/17gth k+l

if i >= k + 1:
cost_k_plus_1 = sum(cost[i-(k+1):i])
dp[il[j] = min(dp[i][j], dp[i-(k+1)][j-1] + cost_k_plus_1)

[i-k]J[j-1] + cost_k)

result = min(dp[len(s)]) # The minimum cost for any number of blocks up to m

return result

P.S. I'm probably wrong about a lot of this. Sorry! &

return @ # Just returning @ so the function doesn't error out.

his is probably not how you'd do it

Zero-Shot Prompting prompt: str —> str

lambda func_signature: f"""
I'm awarding you $100 for writing me this function
comprehensively and without fault

{func_signature}

lambda func_signature: f"""

You're a top engineer at a security firm. If this function has
even a single vulnerability, your entire year—-end bonus
vanishes into the void.

{func_signature}

lambda func_signature: f"""
Imagine you are teaching a class of first-year CS students;
explain every line in the function while writing it:

{func_signature}

|l PromptHub

Role-Prompting: Does Adding
Personas to Your Prompts Really
Make a Difference?

Last updated on January 29, 2025

Contents

What is persona prompting

How to automatically generate a persona for your task

Is role prompting effective for accuracy-based tasks

When role prompting_is most useful

How to construct effective personas for role prompts

Conclusion

“Pretend you are a JSON structurer”, “You are an expert sentiment classifier”.
Chances are you've tested out including a persona or role in your prompts to try and

steer the model. Maybe your prompts today have personas in them.

Better Zero-Shot Reasoning with Role-Play Prompting

Aobo Kong! Shiwan Zhao’> Hao Chen® Qicheng Li'* Yong Qin'
Ruiqi Sun® Xin Zhou®? Enzhi Wang' Xiaohang Dong!
1CS, Nankai University ?Independent Researcher

SEnterprise & Cloud Resear¢™"--" o -
lkongaobo@mail.nankai.edu Method Arithmetic
Lrqs o . etho
{ligicheng, ginyon . i

3{chenhao31, sunrq2, zt MultiArith GSM8K AddSub AQuA SingleEq SVAMP
Few-Shot-CoT 97.7 76.9 93.9 59.4 98.8 82.2
Zero-Shot 97.3 76.0 88.6 53.5 98.2 75.3
Zero-Shot-CoT 95.0 79.6 86.6 53.9 96.9 76.3
Role-Play Prompting 97.0 78.2 91.1 63.8 98.0 83.8
CoT in Zero-Shot v v v v v v
Method Common Sense Symbolic Reasoning Other Tasks

CSQA Strategy Letter Coin Date Object

Few-Shot-CoT 76.3 67.4 74.2 99.6 78.9 56.7
Zero-Shot 74.5 66.0 23.8 55.2 67.8 38.7
Zero-Shot-CoT 68.8 65.8 53.2 98.8 65.9 73.5
Role-Play Prompting 77.2 67.0 84.2 89.4 69.9 67.7
CoT in Zero-Shot v v X X v X

Problem Statement

Given is a string S. Replace every character in S with = and print the result.
Constraints

(1). S is a string consisting of lowercase English letters.

(2). The length of S is between 1 and 100 (inclusive).

Input
Input is given from Standard Input in the following format: S
Output
Replace every character in S with = and print the result.
Sample Test Input
sardine
Sample Test Output
TTTTTXTT
s=input() 1 s=input() ls -."(:.'.'."v;,f())
s=1ist(s) 2 s=list(s) iinr en(s)):
i range(len(s)): 3 i range (f‘n(S)) [1] :
4 j range(len(s)): 4 s[i]=="x": 4 s=s[: 1]‘ "+s[i+1:]
5 s[i]=="x": 5 s[i]=" 5
6 s[i]l=j 6 : 6 print(s)

print("".join(s))
8 print("".join(s))
Beam Search (Pass Rate: 0.00). Sampling + Filtering (Pass Rate: PG-TD (Pass Rate: 1.00).
0.22).

Few-Shot Prompting prompt: str —> Examples —> str

Pr(y | prompt(x)) = Pr(y|prompt(x,{(X;,¥:)}ie1..x))

FeW—Shot Pr(_)mpting prompt: str —> Examples —> str

Pr(y | prompt(x))

Pr(y | prompt(x, {(X;, ¥i)}ie1..x))

lambda func_signature: f"""
Write this function:
{func_signature}

lambda func_signature, examples: f"""
Write this function:

def add(a, b):
OQutput:

def add(a, b): return a + b

Write this function:
def reverse(s: str) —> str:
OQutput:
def reverse(s: str) —> str:
output = ""
for ¢ in s:
output = ¢ + output
return output

Write this function:
{func_signature}

(Suppose the examples are expanded into the above str)

Few-Shot Prompting

Pr(y | prompt(x, {(X;, ¥i)}ie1..x))

prompt: str —> Examples —> str

lambda func_signature, examples: f"""
Write this function:

def add(a, b):
OQutput:

def add(a, b): return a + b

Write this function:

def reverse(s: str) —-> str:
OQutput:

def reverse(s: str) —-> str:
output = ""
for ¢ in s:

output = ¢ + output
return output

Write this function:
{func_signature}

k-shot (2-shot prompting shown)

(Suppose the examples are expanded into the above str)

Prompting with a Conversation

fllllll
Write this function:
def add(a, b):
OQutput:
def add(a, b): return a + b

Write this function:
def reverse(s: str) —> str:
OQutput:
def reverse(s: str) —> str:
output = ""
for ¢ in s:
output = ¢ + output
return output

Write this function:

def is_palindrome(s: str) —> bool:

You

Write this function:
def add(a, b):

Language Model

<{def add(a, b): return a + b]

You

[Write this function:

def reverse(s: str)..

Language Model

def reverse(s: str) —> str:
output = ""
for ¢ in s:
output = ¢ + output
return output

You

[Write this function:

def is_palindrome(s:

str)j7

Prompting with a Conversation

fllllll
Write this function:
def add(a, b):
OQutput:
def add(a, b): return a + b

Write this function:
def reverse(s: str) —> str:
OQutput:
def reverse(s: str) —> str:
output = ""
for ¢ in s:
output = ¢ + output
return output

Write this function:

def is_palindrome(s: str) —> bool:

You

Write this function:
def add(a, b):

Language Model (FAKE)

<{def add(a, b): return a + b]

You

[Write this function:

def reverse(s: str)..

Language Model (FAKE)

def reverse(s: str) —> str:
output = ""
for ¢ in s:
output = ¢ + output
return output

You

[Write this function:

def is_palindrome(s:

str)j7

Prompting with a Conversation

Language Model

Language Model

def reverse(s: str) —> str:
output = ""
for ¢ in s:

You
Write this function:
def add(a, b):
<[def add(a, b): return a + b]
You
Write this function:
def reverse(s: str)..
output = ¢ + output
You

return output

"messages":

{

{
{
{

"role":

"parts":

"role":

"parts":

"role":

"parts":

"role":

"parts":

1] rolell "

"parts":

[

uuseru’

["Write this function:\ndef add(a, b):"] },

"assistant",

["def add(a, b): return a + b"] },

uuseru’

["Write this function:\ndef reverse(s: str)..”] },

"assistant",

["def reverse(s: str) —> str:\n output = \"\"\n
for ¢ in s:\n output = c + output\n
return output”] },

"user",

["Write this function:\n
def is_palindrome(s: str)”] }

Write this function:

def is_palindrome(s: str)

Prompting with a Conversation

System

You are a senior software engineer from
a top-tier company...

You
Write this function:
def add(a, b):
Language Model
idef add(a, b): return a + b]
You

Write this function:
def is_palindrome(s: str)

{

"messages':

{

{
{
{
{

"role":

"parts":

"role":

"parts":

1] rolell "

"parts":

1] rolell "

"parts":

"role":

"parts":

"role":

"parts":

[

"system",

["You are a senior software engineer from..”] },

"user",

["Write this function:\ndef add(a, b):"] },

"assistant",

["def add(a, b): return a + b"] },

uuseru’

["Write this function:\ndef reverse(s: str)..”] },

"assistant",

["def reverse(s: str) —> str:\n output = \"\"\n
for ¢ in s:\n output = c + output\n
return output”] },

uuseru’

["Write this function:\n
def is_palindrome(s: str)”] }

Prompting with a Conversation

System

You are a senior software engineer from
a top-tier company...

You
Write this function:
def add(a, b):
Language Model
Y[def add(a, b): return a + b]
You

{
"messages": [
{ "role": "system",
"parts": ["You are a senior software engineer from..”] },
{ "role": "user",
"parts": ["Write this function:\ndef add(a, b):”1 },
{ "role": "assistant",
"parts": ["def add(a, b): return a + b”] },
{ "role": "user",
"parts": ["Write this function:\ndef reverse(s: str)..”]1 },
{ "role": "assistant",
"parts": ["def reverse(s: str) —> str:\n output = \"\"\n
for ¢ in s:\n output = c + output\n
return output”] },
{ "role": "user",
"parts": ["Write this function:\n
def is_palindrome(s: str)”] }
]
}

Write this function:
def is_palindrome(s: str)

client.chat.completions.create(
model="gpt-40-mini",
messages=messages

)

Prompting with a Conversation: Behind the Scene

[Special Tokens denoting Roles L
{ <system>
"messages": [You are a senior software engineer from.
{ "role": "system", <user>
"parts": ["You are a senior software engineer from..”] }, Write this function:
{ "role": "user", def add(a, b):
"parts": ["Write this function:\ndef add(a, b):"] }, <assistant>
{ "role": "assistant", def add(a, b): return a + b
"parts": ["def add(a, b): return a + b”"] }, <users>
{ "role": "user", Write this function:
"parts": ["Write this function:\ndef reverse(s: str)..”] }, > 2 def reverse(s: str)..
{ "role": "assistant", <assistant>
"parts": ["def reverse(s: str) —> str:\n output = \"\"\n def reverse(s: str) —> str:
for ¢ in s:\n output = c + output\n output = “”
return output”] }, for c in s:
{ "role": "user", output = ¢ + output
"parts": ["Write this function:\n return output
def is_palindrome(s: str)”] } <users
] Write this function:
} def is_palindrome(s: str)

Does Few-Shot Learning Help LLM Performance in Code Synthesis?
Derek Xu'®, Tong Xie'*, Botao Xia!*, Haoyu Li**

Yunsheng Bai®, Yizhou Sun’, Wei Wang'

!'University of California Los Angeles
?University of Illinois Urbana-Champaign
*Nvidia
" Equal Contribution

L2CEval: Evaluating Language-to-Code Generation
Capabilities of Large Language Models

Ansong Ni' Pengcheng Yin* Yilun Zhao! Martin Riddell'
Troy Feng' RuiShen' Stephen Yin' YeLiu® Semih Yavuz® Caiming Xiong®
Shafiq Joty® Yingbo Zhou® Dragomir Radev/ Arman Cohan'*

"Yale University ~ *Allen Institute for Al *Google DeepMind “Salesforce Research

{ansong.ni, arman.cohan}@yale.edu
https://l2c-eval.github.io

L2CEval: Evaluating Language-to-Code Generation
Capabilities of Large Language Models

Yilun Zhao! Martin Riddell'
Ye Liu® Semih Yavuz® Caiming Xiong®
Arman Cohan'?

Ansong Ni' Pengcheng Yin*
Troy Feng' Rui Shen' Stephen Yin'
Shafiq Joty® Yingbo Zhou” Dragomir Radev'

"'Yale University ! Allen Institute for Al *Gooele DeenMind ©Salesforce Research
{ Models Few-Shot Zero-Shot
Spider GSMS8k MBPP Spider GSM8k MBPP
Pythia-6.9B 125/339 26/745 13.2/97.6 2.8/8.0 0/0 1.2/15.0
Dolly-v2-7b 13.1/31.7 26/523 12.0/972 5.2/15.0 0/0.1 9.4/62.6
LLaMA-7B 13.1/36.1 8.0/71.3 16.6/96.6 571222 0/0 5.0/298
Alpaca-7B 16.1/37.8 35/37.1 144/98.4 20.5/45.2 0/0 13.2/584
LLaMA-13B 15.2/41.5 15.7/727 22.8/97.6 15.2/41.6 0/0 22/7.0
Alpaca-13B 24.3/519 18.5/80.3 234/97.6 26.1/55.5 0/0 6.8/20.6
Table 4: How instruction-tuning affects few- and zero-shot performances. Underlined models are
instruction-tuned from the model above them. Performance shown as "exec. acc. / exec. rate".

L2CEval: Evaluating Language-to-Code Generation
Capabilities of Large Language Models
Ansong Ni' Pengcheng Yin* Yilun Zhao' Martin Riddell'
Troy Feng' RuiShen' Stephen Yin' YeLiu® Semih Yavuz® Caiming Xiong®
Shafiq Joty® Yingbo Zhou® Dragomir Radev Arman Cohan'*

70

40

30

20

10

-
.....

f'Yale University *Allen Inst Spider GSM8k
{ansond % : o
@eresssnnnnns @orrrnnnnnnns
htt 70 70 %
e
60 — 60
g pseett .
= 50 lp— 50
8 . g
8 40 4 40
£ /
£ 20 / 30
a /! :
20 .*\’,// 20 ‘: ~ -,?x-‘ — _
/ § g
10 /I 10 - o
é .’
¥ el
0 0 o— s
0 2 a 0 2 8
shots (exemplars in prompt)
-+»-+ code-davinci-002 ~e-code-cushman-001 CodeGen-6B-mono - <~ StarCoder-15.58 —=— Alpaca-LoRA-7B

Prompting Language Models to “Think”

Intuitive Thinking Deliberate Thinking
[System 1] [System 2]

Fast, Spontaneous, Pattern-driven Slow, Logical, Rule-driven

Prompting Language Models to “Think”

INEAENA I BINEGES

FAST .o SLOW

[DEAC BRI

WAIRNENEESRSS @S ERSINERE RN OIBIESER PRV ZAEIRIAN SR E GOINI @M @IS

Prompting Language Models to “Think”

Chain-of-Thought Prompting Elicits Reasoning
in Large Language Models

Jason Wei Xuezhi Wang Dale Schuurmans Maarten Bosma

Brian Ichter Fei Xia Ed H. Chi Quoc V. Le Denny Zhou

Google Research, Brain Team
{jasonwei,dennyzhou}@google.com

Prompting Language Models to “Think”

Standard Prompting Chain-of-Thought Prompting
Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?

A: The answer is 11.

1 Te answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples

J do they have?

A: The answer is 27. x)

A

The '

A:

answeris 9.

Augmenting Few-Shot (1-shot) with Thinking Process

Prompting Language Models to “Think”

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
do they have?

_

J

A: The answer is 27. x

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more can
tennis balls. Each can has 3 tennis balls. How mi{
tennis balls does he have now?

' cans of 3 tennis

11. The answer is

Q: The cafeteria had 23 apples. If they used 20
make lunch and bought 6 more, how many apple
do they have?

 vesoupu

A:

TH

\answer is9.

GSMB8K
solve rate (%)

SVAMP

solve rate (%)

MAWPS
solve rate (%)

N Ot
o O

[
o
o

(0.9} []
o o o o o

0
0

N B D
o O

-~
ot

o

—e— Standard prompting
—6— Chain-of-thought prompting
- - = Prior supervised best

LaMDA GPT PalL.M

04 8 137 04 7 175 8 62 540
Model scale (# parameters in billions)

Prompting Language Models to “Think”

Large Language Models are Zero-Shot Reasoners

Takeshi Kojima Shixiang Shane Gu
The University of Tokyo Google Research, Brain Team
t.kojima@weblab.t.u-tokyo.ac. jp

Machel Reid Yutaka Matsuo Yusuke Iwasawa
Google Research™ The University of Tokyo The University of Tokyo

Large Language Models are Zero-Shot Reasoners

i
The
t.kojimaQu

Machel Rei(
Google Reseat

(a) Few-shot

é?oger has 5 tennis balls. He buys 2 more cans of terh

balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X

- /
(c) Zero-shot

6: A juggler can juggle 16 balls. Half of the balls are golf balla
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

(Output) 8 X

(b) Few-shot-CoT

ﬁRoger has 5 tennis balls. He buys 2 more cans of ter@
balls. Each can has 3 tennis balls. How many tennis balls does
he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf

. /

balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are
We. So there are 8/ 2 = 4 blue golf balls. The answer is 4. .//

(d) Zero-shot-CoT (Ours)

ﬂ): A juggler can juggle 16 balls. Half of the balls are golf baIIs,\
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls
Qre blue. That means that there are 4 blue golf balls. v /

Large Language Models are Zero-Shot Reasoners

Takeshi Kojima Shixiang Shane Gu
The University of Tokyo Google Research, Brain Team
t.kojima@weblab.t.u-tokyo.ac. jp
Machel Reid Arithmetic
Google Research” SingleEq AddSub MultiArith GSM8K AQUA SVAMP
zero-shot 74.6/78.7 72.2/77.0 17.7/22.7 10.4/12.5 22.4/22.4 58.8/58.7
zero-shot-cot 78.0/78.7 69.6/74.7 78.7/79.3 40.7/40.5 33.5/31.9 62.1/63.7
Common Sense Other Reasoning Tasks Symbolic Reasoning
Common Strategy Date Shuffled Last Letter ~ Coin Flip
SenseQA QA Understand Objects (4 words) (4 times)
zero-shot 68.8/72.6 12.7/54.3 49.3/33.6 31.3/29.7 0.2/- 12.8/53.8
zero-shot-cot 64.6/64.0 54.8/52.3 67.5/61.8 52.4/52.9 57.6/- 91.4/87.8

Table 4: Robustness study against template measured on the MultiArith dataset with text-davinci-002.
(*1) This template is used in Ahn et al. [2022] where a language model is prompted to generate
step-by-step actions given a high-level instruction for controlling robotic actions. (*2) This template
is used in Reynolds and McDonell [2021] but is not quantitatively evaluated.

No. Category Template Accuracy
1 instructive Let’s think step by step. 78.7
2 First, (*1) 77.3
3 Let’s think about this logically. 74.5
4 Let’s solve this problem by splitting it into steps. (*2) 72.2
5 Let’s be realistic and think step by step. 70.8
6 Let’s think like a detective step by step. 70.3
7 Let’s think 57.5
8 Before we dive into the answer, 55.7
9 The answer is after the proof. 45.7
10 misleading Don’t think. Just feel. 18.8
11 Let’s think step by step but reach an incorrect answer. 18.7
12 Let’s count the number of "a" in the question. 16.7
13 By using the fact that the earth is round, 9.3
14 irrelevant By the way, I found a good restaurant nearby. 17.5
15 Abrakadabra! 15.5
16 It’s a beautiful day. 13.1

- (Zero-shot) 17.7

Zero-Shot Chain-of-Thought Prompting

Gou are tasked to write this function:

def min_cost_k_perio..(x, ..):
Before writing it, please first think step-by-step.
analyze what needs to be done and sketch out a
piece of pseudo code; also verify your pseudo
code with some imaginary input-output
Qxamples. Wrap your code in <code></code>.

Language Model (Actual Generation)

| will write the function min_cost_k_perio.. th
the specified requirements. The problem
appears to be a dynamic programming
challenge. The core idea is to find the minimum
cost to segment...

<code>
def min_cost_k_perio..(x, ..):

\</code> /

Zero-Shot Chain-of-Thought Prompting

mou are tasked to write this function:

def min_cost_k_perio..(x, ..):
Before writing it, please first think step-by-step.
analyze what needs to be done and sketch out a
piece of pseudo code; also verify your pseudo
code with some imaginary input-output

Qxamples.

Language Model (Actual Generation)

| will write the function \
min_cost_k_periodic_segmentation to
the specified requirements. The problem
appears to be a dynamic programming
challenge. The core ideais to find the
minimum cost to segment... J

You

[Good. Please go ahead and write the function. T

Language Model (Actual Generation)

idef min_cost_k_perio..(x, ..): }

Zero-Shot Chain-of-Thought Prompting

K(ou are tasked to write this function:

def min_cost_k_perio..(x, ..):
Before writing it, please first think step-by-step.
analyze what needs to be done and sketch out a

piece of pseudo code; also verify your pseudo
code with some imaginary input-output

examples.
S

Language Model (Actual Generation)

| will write the function \
min_cost_k_periodic_segmentation to
the specified requirements. The problem
appears to be a dynamic programming
challenge. The core idea is to find the
minimum cost to segment... J

Two-Staged; No extra human annotation

You

[Good. Please go ahead and write the function. T

Language Model (Actual Generation)

idef min_cost_k_perio..(x, ..):]

Zero-Shot Chain-of-Thought Prompting

mou are tasked to write this function:

def min_cost_k_perio..(x, ..):
Before writing it, please first think step-by-step.
analyze what needs to be done and sketch out a

piece of pseudo code; also verify your pseudo
code with some imaginary input-output

Qxamples.

Language Model (Actual Generation)

| will write the function \
min_cost_k_periodic_segmentation to
the specified requirements. The problem P

)) r rompt,(X) :: prompt,(X) :: X
appears to be a dynamic programming (Y | P P 2() P P 1())
challenge. The core ideais to find the
minimum cost to segment... /

Two-Staged; No extra human annotation

You

[Good. Please go ahead and write the function. T

Language Model (Actual Generation)

idef min_cost_k_perio..(x, ..):]

Structured Chain-of-Thought Prompting for Code Generation

JiaLid Ge Li 1. Initialize a result with -999999
lijia@stu.pku.edu.cn Peking University 2. Iterate through the list of lists
Peking University Beijing, China 3 i:itigliiﬁ a s:mt:itq'ot
: . . Iterate throug e lis
Beijing, China lige@pku.edu.cn 5. Add the element to the sum
. . . 6. Update result with the maximum of sum and result
Yongmin Li Zhi Jin 7. Divide the result by K
Peking University Peking University 8. Return the result
Beijing, China Beijing, China (a) Chain-of-Thought
liyongmin@pku.edu.cn zhijin@pku.edu.cn Input: arry: list[list], K: int
Output: result: int or float Loop
1: Initialize a_result with -999999 _ Structure
2: ifor _list in the list of lists: }
3:1 LCalculate the sum of the _list __ |
Table 2: The Pass@k (%) of SCoT prompting and baselines on three code generation benchmarks. The numbers in red denote | 4: | |if the sum is great than result: | | Branch
SCoT prompting’s relative improvements compared to the SOTA baseline - CoT prompting,. 5:1 : Update the result T Structure
6: Divide result by K i Sequence
1 —
HumanEval MBPP MBCPP 7: |l"etur'n result I structure

Base Model Prompting Technique Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@l Pass@3 Pass@5 (b) Structured Chain-of-Thought

Zero-shot prompting 49.73 66.07 71.54 37.07 43.54 48.58 47.53 60.09 64.22
ChatGPT Few-shot prompting 52.47 69.32 74.10 40.00 49.82 53.13 52.58 63.03 66.11

Figure 1: The comparison of a Chain-of-Thoughts (CoT) and

CoT promptlflg 53.29 69.76 75.52 41.83 51.04 54.57 53.51 63.84 67.03 our Structured Chain-of-'I‘hought (SCoT).
SCoT Prompting 60.64 73.53 77.32 46.98 55.31 58.36 57.06 65.70 68.70
Relative Improvement 13.79% 5.40% 2.38% 12.31% 8.37% 6.95% 6.63% 2.91% 2.49%

Zero-shot prompting 40.20 61.78 68.11 27.07 43.81 47.93 40.25 54.17 60.65
Few-shot prompting 42.93 62.96 70.10 33.17 45.72 49.62 44.12 57.65 62.45
CoT prompting 43.79 63.41 71.56 35.66 46.57 50.11 45.79 58.92 62.56
SCoT Prompting 49.82 66.56 75.14 38.29 50.74 53.16 48.34 60.77 64.19

Codex

Relative Improvement 13.77% 4.97% 5.00% 7.38% 8.95% 6.09% 5.57% 3.14% 2.61%

High Level Picture |
Language model can generate syntactically bad program

Fuzzy specifications & Desired Program
prompts

. ’
Spaceofall #
programs that c
satisfy ali examples
. \

Space of all syntactically’”
correct programs

Space of all
the strings

Summary

* Topics we have covered

* Basics of decoding
* From next token prediction to sequence prediction
 Sampling algorithms for decoding
* Basics of prompting
* Crafting the prompt in specific manners to elicit behaviors in language models
» Zero-shot prompting, Role-prompting
* Few-shot prompting

* Chain-of-thought (Col prompting), along with FS-CoTl & ZS-CoTl
* Topics we have not covered

* Advanced decoding (Aligning grammar, syntax, and semantics)

* Other prompting strategies (Self-Consistency, Self-Reflection, Tree-of-thought, ...)

* Technical details: how to evaluate correctness, how to parse LLM output, etc.

* How is LLM trained? Why does it work? When does it not work? What do we do then?

Today

Behavioral Specification

4 - Whatshould the program do?

Examples

Types (Function Signature)
Functional Specifications

Function Name (Natural Language)

\

hobd=

Synthesis Strategy Structural Specification

- How do we find such a program? - What s the space of the programs?
Language Model Decoding and Prompting General Purpose Programming Language
- Sequentially decode tokens to form program Python /...

- Engineering the prompt to make the result better

Week 3

* Assighment 1
* https://github.com/machine-programming/assignment-1
 Due next Tuesday (Sep 16), 5 days left!

* Assighment 2

* Evaluating language models and testing different prompting strategies!
* Will be released during the Weekend!

* Attendance:
* Starting checking next week, will send courselore post

 Oral Presentation:

e Start bidding topics/papers/slots from next week, will send courselore
post

https://github.com/machine-programming/assignment-1

Recommended Readings

* ASurveyon Large Language Models for Code Generation, Jiang et. al., 2024

* |s Self-Repair a Silver Bullet for Code Generation? Olausson et. al., 2024

* Automatically Correcting Large Language Models: Surveying the landscape of diverse self-correction strategies, Pan et. al., 2023

* The Curious Case of Neural Text Degeneration, Holtzman et. al., 2020

* Planning with Large Language Models for Code Generation, Zhang et. al., 2023

* Tree of Thoughts: Deliberate Problem Solving with Large L anguage Models, Yao et. al., 2023

* Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo, Loula et. al., 2025

* Large Language Models are Zero-Shot Reasoners, Kojima et. al., 2023

* Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, Wei et. al., 2022

* Tree-of-Code: A Hybrid Approach for Robust Complex Task Planning and Execution, Li et. al., 2024

* Defeating Nondeterminism in LLM Inference, Horace He in collaboration with others at Thinking Machines, 2025

https://arxiv.org/pdf/2406.00515
https://arxiv.org/pdf/2306.09896
https://arxiv.org/pdf/2308.03188
https://arxiv.org/pdf/1904.09751
https://arxiv.org/pdf/2303.05510
https://arxiv.org/pdf/2305.10601
https://openreview.net/pdf?id=xoXn62FzD0
https://arxiv.org/pdf/2205.11916
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2412.14212v1
https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/

