
Machine Programming
Lecture 6 – Decoding and Prompting for Program Synthesis

Ziyang Li

Dimensions in Program Synthesis

Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?

Synthesis Strategy
- How do we find such a program?

The Course So Far
Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?

Synthesis Strategy
- How do we find such a program?

1. Examples
2. Types
3. Functional Specifications
4. Natural Language

General Purpose Programming Language
Python / Java / C / Rust / …

Data-Driven Approaches
- Modeling programs as token sequences
- Modeling synthesis as next token prediction

Enumeration
- Enumerating all programs with a grammar
- Bottom-up vs top-down

Today
Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?

Synthesis Strategy
- How do we find such a program?

1. Examples
2. Types
3. Functional Specifications
4. Natural Language

General Purpose Programming Language
Python / Java / C / Rust / …

Data-Driven Approaches
- Modeling programs as token sequences
- Modeling synthesis as next token prediction

Enumeration
- Enumerating all programs with a grammar
- Bottom-up vs top-down

High Level Picture

Space of all
the strings

Desired Program

High Level Picture

Space of all
the strings

Desired Program

Space of all syntactically
correct programs

High Level Picture

Space of all
the strings

Desired Program

Space of all syntactically
correct programs

Space of all type checked
programs

High Level Picture

Space of all
the strings

Desired Program

Space of all syntactically
correct programs

Space of all type checked
programs

Space of all
programs that can

satisfy all examples

High Level Picture

Space of all
the strings

Desired Program

Space of all syntactically
correct programs

Space of all type checked
programs

Space of all
programs that can

satisfy all examples

Functional Specification

High Level Picture

Space of all
the strings

Desired Program

Space of all syntactically
correct programs

Space of all type checked
programs

Space of all
programs that can

satisfy all examples

Functional
Specification

High Level Picture

Space of all
the strings

Desired Program

Space of all syntactically
correct programs

Space of all type checked
programs

Space of all
programs that can

satisfy all examples

Functional
Specification

Fuzzy
Specification

Today
Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?

Synthesis Strategy
- How do we find such a program?

1. Examples
2. Types
3. Functional Specifications
4. Natural Language

General Purpose Programming Language
Python / Java / C / Rust / …

Language Model Decoding
- Chaining next token prediction

What’s Next from Next Token Prediction

Problem Definition: Next token prediction

𝐱 = 𝑥!, 𝑥", … , 𝑥#Input: Input Sequence Output: Next Token 𝑦$

Goal: Compute the probability Pr 𝑦$ 	 𝑦!, 𝑦", … , 𝑦$%!, 𝐱)

Input: Generated tokens so far 𝑦!, 𝑦", … , 𝑦$%!

What’s Next from Next Token Prediction

Problem Definition: Next token prediction

𝐱 = 𝑥!, 𝑥", … , 𝑥#Input: Input Sequence Output: Next Token 𝑦$

Goal: Compute the probability Pr 𝑦$ 	 𝑦!, 𝑦", … , 𝑦$%!, 𝐱)

Input: Generated tokens so far 𝑦!, 𝑦", … , 𝑦$%!

Chaining next token predictions:

[for, i, in] à range
[for, i, in, range] à (

[for, i, in, range, (] à 10
[for, i, in, range, (, 10] à)

[for, i, in, range, (, 10,)] à :

What’s Next from Next Token Prediction
Chaining next token predictions:

When do we stop?

[for, i, in] à range
[for, i, in, range] à (

[for, i, in, range, (] à 10
[for, i, in, range, (, 10] à)

[for, i, in, range, (, 10,)] à :

…

What’s Next from Next Token Prediction
Chaining next token predictions:

When do we stop?

[for, i, in, range, …, print, (, i,)] à <EOS>

When a special token <EOS> is generated

[for, i, in] à range
[for, i, in, range] à (

[for, i, in, range, (] à 10
[for, i, in, range, (, 10] à)

[for, i, in, range, (, 10,)] à :

…

What’s Next from Next Token Prediction

Problem Definition: Sequential Decoding

𝐱 = 𝑥!, 𝑥", … , 𝑥#Input: Input Sequence Output: Output Sequence 𝐲 = 𝑦!, 𝑦", … , 𝑦&

Goal: Get the output 𝐲 from Pr 𝐲	 𝐱)

from transformers import AutoModelForCausalLM, AutoTokenizer

tok = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2")

inputs = tok("def add(a, b):", return_tensors="pt")
logits = model(**inputs).logits
probs = logits.softmax(-1)
print(tok.decode(probs[0, -1].topk(5).indices))

from transformers import AutoModelForCausalLM, AutoTokenizer

tok = AutoTokenizer.from_pretrained("gpt2")
model = AutoModelForCausalLM.from_pretrained("gpt2")

inputs = tok("def add(a, b):", return_tensors="pt")
logits = model(**inputs).logits
probs = logits.softmax(-1)
print(tok.decode(probs[0, -1].topk(5).indices))

Top 5 Tokens: [“\n” , “return”, “#” , “if” , “a”]
Top 5 Token IDs: [198 , 1441 , 1303 , 611 , 257]
Top 5 Token Probabilities: [0.1946, 0.1221 , 0.0448, 0.0425, 0.0416]

What’s Next from Next Token Prediction

Problem Definition: Sequential Decoding

𝐱 = 𝑥!, 𝑥", … , 𝑥#Input: Input Sequence Output: Output Sequence 𝐲 = 𝑦!, 𝑦", … , 𝑦&

Goal: Get the output 𝐲 from Pr 𝐲	 𝐱)

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 probs = softmax(predict_next_token(current_sequence))
 next_token = argmax(probs)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
return output_sequence

What’s Next from Next Token Prediction

Problem Definition: Sequential Decoding

𝐱 = 𝑥!, 𝑥", … , 𝑥#Input: Input Sequence Output: Output Sequence 𝐲 = 𝑦!, 𝑦", … , 𝑦&

Goal: Get the output 𝐲 from Pr 𝐲	 𝐱)

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 probs = softmax(predict_next_token(current_sequence))
 next_token = argmax(probs)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
return output_sequence

Greedy Decoding: Take Top-1 Prediction

Decoding: Sampling vs Greedy
current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 probs = softmax(predict_next_token(current_sequence))
 next_token = argmax(probs)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
return output_sequence

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence) / temperature
 probs = softmax(logits)
 next_token = sample_from(probs)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
return output_sequence

Greedy

Sampling

Decoding: Sampling vs Greedy
current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 probs = softmax(predict_next_token(current_sequence))
 next_token = argmax(probs)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
return output_sequence

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence) / temperature
 probs = softmax(logits)
 next_token = sample_from(probs)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
return output_sequence

Greedy

Sampling

temp = 1: original distribution after softmax
temp > 1: flatter distribution
temp < 1: sharper distribution

logits = predict_next_token(current_sequence)
adjusted = logits / temperature
probs = softmax(adjusted)

How can it be 0?

Setting temperature to 0 removes randomness

https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/

https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/

Decoding: Practical Implementation
current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 probs = softmax(predict_next_token(current_sequence))
 next_token = argmax(probs)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
return output_sequence

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence) / temperature
 probs = softmax(logits)
 next_token = sample_from(probs)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
return output_sequence

Greedy

Sampling

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence)
 if temperature == 0:
 next_token = argmax(softmax(logits))
 else:
 probs = softmax(logits / temperature)
 next_token = sample_from(probs)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
return output_sequence

Decoding: Practical Implementation
current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 probs = softmax(predict_next_token(current_sequence))
 next_token = argmax(probs)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
return output_sequence

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence) / temperature
 probs = softmax(logits)
 next_token = sample_from(probs)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
return output_sequence

Greedy

Sampling

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence)
 if temperature == 0:
 next_token = argmax(softmax(logits))
 else:
 probs = softmax(logits / temperature)
 next_token = sample_from(probs)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS> or len(output_sequence) > MAX_LEN: break
return output_sequence

Decoding: Practical Implementation
current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 probs = softmax(predict_next_token(current_sequence))
 next_token = argmax(probs)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
return output_sequence

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence) / temperature
 probs = softmax(logits)
 next_token = sample_from(probs)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
return output_sequence

Greedy

Sampling

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence)
 if temperature == 0:
 next_token = argmax(softmax(logits))
 else:
 probs = softmax(logits / temperature)
 next_token = sample_from(probs)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS> or len(output_sequence) > MAX_LEN: break
return output_sequence

Decoding: Nucleus Sampling (Top-P)

Decoding: Nucleus Sampling (Top-P)

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence) / temperature
 probs = softmax(logits)
 next_token = nucleus_sample_from(probs, P)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
return output_sequence

Decoding: Nucleus Sampling (Top-P)

current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence) / temperature
 probs = softmax(logits)
 next_token = nucleus_sample_from(probs, P)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
return output_sequence

def nucleus_sample_from(probs, P):
 sorted_probs, sorted_indices = sort_desc(probs)
 cumulative = cumsum(sorted_probs)
 cutoff_idx = index_of_first(cumulative >= P)
 candidate_indices = sorted_indices[0:cutoff_idx]
 candidate_probs = normalize(sorted_probs[0:cutoff_idx]
 return random_choice(candidate_indices, p=candidate_probs)

Decoding: Nucleus Sampling (Top-P)

def nucleus_sample_from(probs, P):
 sorted_probs, sorted_indices = sort_desc(probs)
 cumulative = cumsum(sorted_probs)
 cutoff_idx = index_of_first(cumulative >= P)
 candidate_indices = sorted_indices[0:cutoff_idx]
 candidate_probs = normalize(sorted_probs[0:cutoff_idx]
 return random_choice(candidate_indices, p=candidate_probs)

@

#
$

probs

#
@
$

sort_desc

#
@
$

cumsum

#
@
$

#
$

candidate_indices

@

samplednormalize

#
@
$

#
@
$

index_of_first

P

High Level Picture

Space of all
the strings

Desired Program

Space of all syntactically
correct programs

Space of all type checked
programs

Space of all
programs that can

satisfy all examples

Functional
Specification

Fuzzy
Specification

Language model can generate syntactically bad program

Decoding in the Wild

Decoding

Problem Definition: Decoding

𝐱 = 𝑥!, 𝑥", … , 𝑥#Input: Input Sequence Output: Output Sequence 𝐲 = 𝑦!, 𝑦", … , 𝑦&

Goal: Get the output 𝐲 from Pr 𝐲	 𝐱)

Decoding for Code Completion

Problem Definition: Decoding

𝐱 = 𝑥!, 𝑥", … , 𝑥#Input: Input Sequence Output: Output Sequence 𝐲 = 𝑦!, 𝑦", … , 𝑦&

Goal: Get the output 𝐲 from Pr 𝐲	 𝐱)

[for, i, in] à range
[for, i, in, range] à (

[for, i, in, range, (] à 10
[for, i, in, range, (, 10] à)

[for, i, in, range, (, 10,)] à :

…

[for, i, in, range, …, print, (, i,)] à <EOS>

Code Completion à Code Generation

Problem Definition: Code Generation

𝐱 = 𝑥!, 𝑥", … , 𝑥#Input: Input Sequence Output: Output Sequence 𝐲 = 𝑦!, 𝑦", … , 𝑦&

Goal: Get the output 𝐲 from Pr 𝐲	 𝐱)

def auto_complete(program: str) -> str:𝐱

Code Generation
𝐱 = 𝑥!, 𝑥", … , 𝑥#Input: Input Sequence Output: Output Sequence 𝐲 = 𝑦!, 𝑦", … , 𝑦&

Goal: Get the output 𝐲 from Pr 𝐲	 𝐱)

def auto_complete(program: str) -> str:

Simple rule-based auto-completion for demonstration
 program = program.strip()
 if program.startswith("for ") and " in " in program and not program.endswith(":"):
 # Complete a for loop
 var = program.split("for ")[1].split(" in ")[0].strip()
 return f"range(10):\n\tprint({var})<EOS>"
 elif program.startswith("def ") and program.endswith("("):
 # Complete a function definition
 func_name = program[4:-1].strip()
 return f"):\n\tpass<EOS>”
 else:
 return "<EOS>"

𝐱

𝐲

Better Code Generation via Prompting
𝐱 = 𝑥!, 𝑥", … , 𝑥#Input: Input Sequence Output: Output Sequence 𝐲 = 𝑦!, 𝑦", … , 𝑦&

Goal: Get the output 𝐲 from Pr 𝐲	 𝐱)

Write me a function that takes in a string representing a
partial program and output the auto-completed rest
#
e.g. "for i in " -> "range(10):\n\tprint(i)<EOS>"
def auto_complete(program: str) -> str:

Simple rule-based auto-completion for demonstration
 program = program.strip()
 if program.startswith("for ") and " in " in program and not program.endswith(":"):
 # Complete a for loop
 var = program.split("for ")[1].split(" in ")[0].strip()
 return f"range(10):\n\tprint({var})<EOS>"
 elif program.startswith("def ") and program.endswith("("):
 # Complete a function definition
 func_name = program[4:-1].strip()
 return f"):\n\tpass<EOS>”
 else:
 return "<EOS>"

𝐱

𝐲

Pr 𝐲	 prompt(𝐱))è

Prompting

Pr 𝐲	 𝐱) Pr 𝐲	 prompt(𝐱))è

prompt	: str -> str

Prompting prompt	: str -> str

lambda func_signature: f"""
You are a Meta programmer. Write this function to spec,
elegantly and without bugs.
{func_signature}
"""

lambda func_signature: f"""
You are a Google engineer. Write this function to spec,
elegantly and without bugs.
{func_signature}
"""

lambda func_signature: f"""
You are a high school student learning about Computer Science.
Attempt to write this function
{func_signature}
"""

lambda func_signature: f"""
You are a Meta programmer. Write this
function to spec, elegantly and without
bugs.
{func_signature}
"""

lambda func_signature: f"""
You are a high school student learning
about Computer Science. Attempt to write
this function
{func_signature}
"""

lambda func_signature: f"""
You are a Meta programmer. Write this
function to spec, elegantly and without
bugs.
{func_signature}
"""

lambda func_signature: f"""
You are a high school student learning
about Computer Science. Attempt to write
this function
{func_signature}
"""

lambda func_signature: f"""
You are a Meta programmer. Write this
function to spec, elegantly and without
bugs.
{func_signature}
"""

lambda func_signature: f"""
You are a high school student learning
about Computer Science. Attempt to write
this function
{func_signature}
"""

lambda func_signature: f"""
You are a Meta programmer. Write this
function to spec, elegantly and without
bugs.
{func_signature}
"""

lambda func_signature: f"""
You are a high school student learning
about Computer Science. Attempt to write
this function
{func_signature}
"""

0/75/7

Zero-Shot Prompting prompt	: str -> str

lambda func_signature: f"""
I’m awarding you $100 for writing me this function
comprehensively and without fault
{func_signature}
"""

lambda func_signature: f"""
You’re a top engineer at a security firm. If this function has
even a single vulnerability, your entire year-end bonus
vanishes into the void.
{func_signature}
"""

lambda func_signature: f"""
Imagine you are teaching a class of first-year CS students;
explain every line in the function while writing it:
{func_signature}
"""

Few-Shot Prompting prompt	: str -> Examples -> str

Pr 𝐲	 prompt(𝐱)) Pr 𝐲	 prompt(𝐱, 𝐱! , 𝐲! !∈#…%))è

Few-Shot Prompting prompt	: str -> Examples -> str

lambda func_signature: f"""
Write this function:
{func_signature}
"""

lambda func_signature, examples: f"""
Write this function:
 def add(a, b):
Output:
 def add(a, b): return a + b

Write this function:
 def reverse(s: str) -> str:
Output:
 def reverse(s: str) -> str:
 output = ""
 for c in s:
 output = c + output
 return output

Write this function:
{func_signature}
"""

Pr 𝐲	 prompt(𝐱))

Pr 𝐲	 prompt(𝐱, 𝐱$, 𝐲$ $∈!…)))

(Suppose the examples are expanded into the above str)

Few-Shot Prompting prompt	: str -> Examples -> str

lambda func_signature, examples: f"""
Write this function:
 def add(a, b):
Output:
 def add(a, b): return a + b

Write this function:
 def reverse(s: str) -> str:
Output:
 def reverse(s: str) -> str:
 output = ""
 for c in s:
 output = c + output
 return output

Write this function:
{func_signature}
"""

Pr 𝐲	 prompt(𝐱, 𝐱$, 𝐲$ $∈!…)))

(Suppose the examples are expanded into the above str)

𝑘-shot (2-shot prompting shown)

Prompting with a Conversation

f"""
Write this function:
 def add(a, b):
Output:
 def add(a, b): return a + b

Write this function:
 def reverse(s: str) -> str:
Output:
 def reverse(s: str) -> str:
 output = ""
 for c in s:
 output = c + output
 return output

Write this function:
 def is_palindrome(s: str) -> bool:
"""

Write this function:
 def add(a, b):

def add(a, b): return a + b

You

Language Model

Write this function:
 def reverse(s: str)…

You

def reverse(s: str) -> str:
 output = ""
 for c in s:
 output = c + output
 return output

Language Model

Write this function:
 def is_palindrome(s: str)

You

Prompting with a Conversation

f"""
Write this function:
 def add(a, b):
Output:
 def add(a, b): return a + b

Write this function:
 def reverse(s: str) -> str:
Output:
 def reverse(s: str) -> str:
 output = ""
 for c in s:
 output = c + output
 return output

Write this function:
 def is_palindrome(s: str) -> bool:
"""

Write this function:
 def add(a, b):

def add(a, b): return a + b

You

Language Model (FAKE)

Write this function:
 def reverse(s: str)…

You

def reverse(s: str) -> str:
 output = ""
 for c in s:
 output = c + output
 return output

Language Model (FAKE)

Write this function:
 def is_palindrome(s: str)

You

Prompting with a Conversation
Write this function:
 def add(a, b):

def add(a, b): return a + b

You

Language Model

Write this function:
 def reverse(s: str)…

You

def reverse(s: str) -> str:
 output = ""
 for c in s:
 output = c + output
 return output

Language Model

Write this function:
 def is_palindrome(s: str)

You

{
 "messages": [
 { "role": "user",
 ”parts": ["Write this function:\ndef add(a, b):”] },
 { "role": "assistant",
 ”parts": ["def add(a, b): return a + b”] },
 { "role": "user",
 ”parts": ["Write this function:\ndef reverse(s: str)…”] },
 { "role": "assistant",
 ”parts": ["def reverse(s: str) -> str:\n output = \"\"\n
 for c in s:\n output = c + output\n
 return output”] },
 { "role": "user",
 ”parts": ["Write this function:\n
 def is_palindrome(s: str)”] }
]
}

è

Prompting with a Conversation

Write this function:
 def add(a, b):

def add(a, b): return a + b

You

Language Model

Write this function:
 def is_palindrome(s: str)

You

{
 "messages": [
 { "role": ”system",
 ”parts": [”You are a senior software engineer from…”] },
 { "role": "user",
 ”parts": ["Write this function:\ndef add(a, b):”] },
 { "role": "assistant",
 ”parts": ["def add(a, b): return a + b”] },
 { "role": "user",
 ”parts": ["Write this function:\ndef reverse(s: str)…”] },
 { "role": "assistant",
 ”parts": ["def reverse(s: str) -> str:\n output = \"\"\n
 for c in s:\n output = c + output\n
 return output”] },
 { "role": "user",
 ”parts": ["Write this function:\n
 def is_palindrome(s: str)”] }
]
}

è

You are a senior software engineer from
a top-tier company…

System

…

Prompting with a Conversation

Write this function:
 def add(a, b):

def add(a, b): return a + b

You

Language Model

Write this function:
 def is_palindrome(s: str)

You

{
 "messages": [
 { "role": ”system",
 ”parts": [”You are a senior software engineer from…”] },
 { "role": "user",
 ”parts": ["Write this function:\ndef add(a, b):”] },
 { "role": "assistant",
 ”parts": ["def add(a, b): return a + b”] },
 { "role": "user",
 ”parts": ["Write this function:\ndef reverse(s: str)…”] },
 { "role": "assistant",
 ”parts": ["def reverse(s: str) -> str:\n output = \"\"\n
 for c in s:\n output = c + output\n
 return output”] },
 { "role": "user",
 ”parts": ["Write this function:\n
 def is_palindrome(s: str)”] }
]
}

è

You are a senior software engineer from
a top-tier company…

System

…

client.chat.completions.create(
 model="gpt-4o-mini",
 messages=messages
)

Prompting with a Conversation: Behind the Scene

{
 "messages": [
 { "role": ”system",
 ”parts": [”You are a senior software engineer from…”] },
 { "role": "user",
 ”parts": ["Write this function:\ndef add(a, b):”] },
 { "role": "assistant",
 ”parts": ["def add(a, b): return a + b”] },
 { "role": "user",
 ”parts": ["Write this function:\ndef reverse(s: str)…”] },
 { "role": "assistant",
 ”parts": ["def reverse(s: str) -> str:\n output = \"\"\n
 for c in s:\n output = c + output\n
 return output”] },
 { "role": "user",
 ”parts": ["Write this function:\n
 def is_palindrome(s: str)”] }
]
}

<system>
You are a senior software engineer from…
<user>
Write this function:
 def add(a, b):
<assistant>
def add(a, b): return a + b
<user>
Write this function:
 def reverse(s: str)…
<assistant>
def reverse(s: str) -> str:
 output = “”
 for c in s:
 output = c + output
 return output
<user>
Write this function:
 def is_palindrome(s: str)

è

Special Tokens denoting Roles

Prompting Language Models to “Think”

Intuitive Thinking
[System 1]

🧠

Fast, Spontaneous, Pattern-driven

Deliberate Thinking
[System 2]

🧠

Slow, Logical, Rule-driven

Prompting Language Models to “Think”

Prompting Language Models to “Think”

Prompting Language Models to “Think”

Augmenting Few-Shot (1-shot) with Thinking Process

Prompting Language Models to “Think”

Prompting Language Models to “Think”

Zero-Shot Chain-of-Thought Prompting
You are tasked to write this function:
 def min_cost_k_perio…(x, …):
Before writing it, please first think step-by-step.
analyze what needs to be done and sketch out a
piece of pseudo code; also verify your pseudo
code with some imaginary input-output
examples. Wrap your code in <code></code>.

I will write the function min_cost_k_perio… to
the specified requirements. The problem
appears to be a dynamic programming
challenge. The core idea is to find the minimum
cost to segment…

<code>
def min_cost_k_perio…(x, …):
 …
</code>

You

Language Model (Actual Generation)

Zero-Shot Chain-of-Thought Prompting
You are tasked to write this function:
 def min_cost_k_perio…(x, …):
Before writing it, please first think step-by-step.
analyze what needs to be done and sketch out a
piece of pseudo code; also verify your pseudo
code with some imaginary input-output
examples.

I will write the function
min_cost_k_periodic_segmentation to
the specified requirements. The problem
appears to be a dynamic programming
challenge. The core idea is to find the
minimum cost to segment…

You

Language Model (Actual Generation)

Good. Please go ahead and write the function.

You

def min_cost_k_perio…(x, …):
 …

Language Model (Actual Generation)

Zero-Shot Chain-of-Thought Prompting
You are tasked to write this function:
 def min_cost_k_perio…(x, …):
Before writing it, please first think step-by-step.
analyze what needs to be done and sketch out a
piece of pseudo code; also verify your pseudo
code with some imaginary input-output
examples.

I will write the function
min_cost_k_periodic_segmentation to
the specified requirements. The problem
appears to be a dynamic programming
challenge. The core idea is to find the
minimum cost to segment…

You

Language Model (Actual Generation)

Good. Please go ahead and write the function.

You

def min_cost_k_perio…(x, …):
 …

Language Model (Actual Generation)

Two-Staged; No extra human annotation

Zero-Shot Chain-of-Thought Prompting
You are tasked to write this function:
 def min_cost_k_perio…(x, …):
Before writing it, please first think step-by-step.
analyze what needs to be done and sketch out a
piece of pseudo code; also verify your pseudo
code with some imaginary input-output
examples.

I will write the function
min_cost_k_periodic_segmentation to
the specified requirements. The problem
appears to be a dynamic programming
challenge. The core idea is to find the
minimum cost to segment…

You

Language Model (Actual Generation)

Good. Please go ahead and write the function.

You

def min_cost_k_perio…(x, …):
 …

Language Model (Actual Generation)

Two-Staged; No extra human annotation

Pr 𝐲	 prompt" 𝐱 ∷ prompt! 𝐱 ∷ 𝐱)

High Level Picture

Space of all
the strings

Desired Program

Space of all syntactically
correct programs

Space of all type checked
programs

Space of all
programs that can

satisfy all examples

Functional
Specification

Fuzzy specifications &
prompts

Language model can generate syntactically bad program

Summary

• Topics we have covered
• Basics of decoding

• From next token prediction to sequence prediction
• Sampling algorithms for decoding

• Basics of prompting
• Crafting the prompt in specific manners to elicit behaviors in language models
• Zero-shot prompting, Role-prompting
• Few-shot prompting
• Chain-of-thought (CoT prompting), along with FS-CoT & ZS-CoT

• Topics we have not covered
• Advanced decoding (Aligning grammar, syntax, and semantics)
• Other prompting strategies (Self-Consistency, Self-Reflection, Tree-of-thought, …)
• Technical details: how to evaluate correctness, how to parse LLM output, etc.
• How is LLM trained? Why does it work? When does it not work? What do we do then?

Today
Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?

Synthesis Strategy
- How do we find such a program?

Language Model Decoding and Prompting
- Sequentially decode tokens to form program
- Engineering the prompt to make the result better

1. Examples
2. Types (Function Signature)
3. Functional Specifications
4. Function Name (Natural Language)

General Purpose Programming Language
Python / …

Week 3

• Assignment 1
• https://github.com/machine-programming/assignment-1
• Due next Tuesday (Sep 16), 5 days left!

• Assignment 2
• Evaluating language models and testing different prompting strategies!
• Will be released during the Weekend!

• Attendance:
• Starting checking next week, will send courselore post

• Oral Presentation:
• Start bidding topics/papers/slots from next week, will send courselore

post

https://github.com/machine-programming/assignment-1

Recommended Readings
• A Survey on Large Language Models for Code Generation, Jiang et. al., 2024

• Is Self-Repair a Silver Bullet for Code Generation? Olausson et. al., 2024

• Automatically Correcting Large Language Models: Surveying the landscape of diverse self-correction strategies, Pan et. al., 2023

• The Curious Case of Neural Text Degeneration, Holtzman et. al., 2020

• Planning with Large Language Models for Code Generation, Zhang et. al., 2023

• Tree of Thoughts: Deliberate Problem Solving with Large Language Models, Yao et. al., 2023

• Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo, Loula et. al., 2025

• Large Language Models are Zero-Shot Reasoners, Kojima et. al., 2023

• Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, Wei et. al., 2022

• Tree-of-Code: A Hybrid Approach for Robust Complex Task Planning and Execution, Li et. al., 2024

• Defeating Nondeterminism in LLM Inference, Horace He in collaboration with others at Thinking Machines, 2025

https://arxiv.org/pdf/2406.00515
https://arxiv.org/pdf/2306.09896
https://arxiv.org/pdf/2308.03188
https://arxiv.org/pdf/1904.09751
https://arxiv.org/pdf/2303.05510
https://arxiv.org/pdf/2305.10601
https://openreview.net/pdf?id=xoXn62FzD0
https://arxiv.org/pdf/2205.11916
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2412.14212v1
https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/

