
Machine Programming
Lecture 8 – Controlled Decoding and Steering

Ziyang Li

Dimensions in Program Synthesis

Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?

Synthesis Strategy
- How do we find such a program?

The Course So Far
Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?

Synthesis Strategy
- How do we find such a program?

1. Examples
2. Types
3. Functional Specifications
4. Natural Language

General Purpose Programming Language
Python / Java / C / Rust / …

Data-Driven Approaches
- Next token prediction, greedy decoding and sampling
- Prompting language models, Iterative Refinement

Enumeration
- Enumerating all programs with a grammar
- Bottom-up vs top-down

Domain Specific Languages

Today
Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?Synthesis Strategy

- How do we find such a program?

1. Examples
2. Types
3. Functional Specifications
4. Natural Language

General Purpose Programming Language
Python / Java / C / Rust / …Controlled Decoding

- Grammar constraints, programmatic constraints
- Syntactic and semantic potentials, monitor feedback
- Programmatic and Structural steering

High Level Picture

Space of all
the strings

Desired Program

Space of all syntactically
correct programs

Space of all type checked
programs

Space of all
programs that can

satisfy all examples

Functional
Specification

Fuzzy
Specification

Syntactic &
Semantic

Constraints

High Level Picture

• We studied foundations of programming languages and synthesis
• Syntax (regular tree grammar), Semantics (denotational, operational)
• Enumeration (top-down, bottom-up) that searches within grammar

• We studied basic usage of language models
• Purely neural: next token prediction à sequential decoding
• Prompting and iterative refinement: elicit better programs from LLM

• Question:
• Can we inject more structure during neural generation process

Review: Syntax in Regular Tree Grammar

(Program) P ::= L | N
 (List) L ::= input
 | empty
 | single(N)
 | concat(L, L)
 (Number) N ::= len(L)
 | min(L)
 | add(N, N)
 | 0 | 1 | 2 | …

Review: Syntax in Regular Tree Grammar

(Program) P ::= L | N
 (List) L ::= input
 | empty
 | single(N)
 | concat(L, L)
 (Number) N ::= len(L)
 | min(L)
 | add(N, N)
 | 0 | 1 | 2 | …

(Program) P ::= L | N
 (List) L ::= input
 | []
 | [N]
 | L ++ L
 (Number) N ::= len(L)
 | min(L)
 | N + N
 | 0 | 1 | 2 | …

Review: Syntax in Context Free Grammar

(Program) P ::= L | N
 (List) L ::= input
 | empty
 | single(N)
 | concat(L, L)
 (Number) N ::= len(L)
 | min(L)
 | add(N, N)
 | 0 | 1 | 2 | …

(Program) P <- L | N
 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

From Program to Abstract Syntax Tree

(Program) P ::= L | N
 (List) L ::= input
 | empty
 | single(N)
 | concat(L, L)
 (Number) N ::= len(L)
 | min(L)
 | add(N, N)
 | 0 | 1 | 2 | …

(Program) P <- L | N
 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

Abstract Grammar (Regular Tree Grammar)

Concrete Grammar (Context Free Grammar)

min(input ++ [0])
Concrete Program

From Program to Abstract Syntax Tree

(Program) P ::= L | N
 (List) L ::= input
 | empty
 | single(N)
 | concat(L, L)
 (Number) N ::= len(L)
 | min(L)
 | add(N, N)
 | 0 | 1 | 2 | …

(Program) P <- L | N
 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

Abstract Grammar (Regular Tree Grammar)

Concrete Grammar (Context Free Grammar)

min(input ++ [0])
Concrete Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

From Program to Abstract Syntax Tree

(Program) P ::= L | N
 (List) L ::= input
 | empty
 | single(N)
 | concat(L, L)
 (Number) N ::= len(L)
 | min(L)
 | add(N, N)
 | 0 | 1 | 2 | …

(Program) P <- L | N
 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

Abstract Grammar (Regular Tree Grammar)

Concrete Grammar (Context Free Grammar)

min(input ++ [0])
Concrete Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Concrete Syntax Tree

P

N

min (L)

L ++ L

[N]

0

input

From Program to Abstract Syntax Tree

(Program) P ::= L | N
 (List) L ::= input
 | empty
 | single(N)
 | concat(L, L)
 (Number) N ::= len(L)
 | min(L)
 | add(N, N)
 | 0 | 1 | 2 | …

(Program) P <- L | N
 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

Abstract Grammar (Regular Tree Grammar)

Concrete Grammar (Context Free Grammar)

min(input ++ [0])
Concrete Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Concrete Syntax Tree

P

N

min (L)

L ++ L

[N]

0

input

Abstract Syntax Tree

min

concat

input single

0

From Program to Abstract Syntax Tree

(Program) P ::= L | N
 (List) L ::= input
 | empty
 | single(N)
 | concat(L, L)
 (Number) N ::= len(L)
 | min(L)
 | add(N, N)
 | 0 | 1 | 2 | …

(Program) P <- L | N
 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

Abstract Grammar (Regular Tree Grammar)

Concrete Grammar (Context Free Grammar)

min(input ++ [0])
Concrete Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Concrete Syntax Tree

P

N

min (L)

L ++ L

[N]

0

input

Abstract Syntax Tree

min

concat

input single

0

Lexer

Parser

Lexer and Parser

min(input ++ [0])
Concrete Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Concrete Syntax Tree

P

N

min (L)

L ++ L

[N]

0

input

Abstract Syntax Tree

min

concat

input single

0

Lexer

Parser

Lexer and Parser

min(input ++ [0])
Concrete Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Concrete Syntax Tree

P

N

min (L)

L ++ L

[N]

0

input

Abstract Syntax Tree

min

concat

input single

0

Lexer

Parser

Lexer and Parser

min(input ++ [0])
Concrete Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Concrete Syntax Tree

P

N

min (L)

L ++ L

[N]

0

input

Abstract Syntax Tree

min

concat

input single

0

Lexer

Parser

> echo "min(input ++ [0])" | npx tree-sitter parse

(program [0, 0] - [1, 0]
 (number [0, 0] - [0, 17]
 (min [0, 0] - [0, 17]
 (list [0, 4] - [0, 16]
 (concat [0, 4] - [0, 16]
 (list [0, 4] - [0, 9]
 (input [0, 4] - [0, 9]))
 (list [0, 13] - [0, 16]
 (single [0, 13] - [0, 16]
 (number [0, 14] - [0, 15]
 (int_lit [0, 14] - [0, 15])))))))))

Lexer and Parser in the Wild
JSON (json.l) JSON (json.y)

Python (python.lalrpop)

High Level Picture

• We studied foundations of programming languages and synthesis
• Syntax (regular tree grammar), Semantics (denotational, operational)
• Enumeration (top-down, bottom-up) that searches within grammar

• We studied basic usage of language models
• Purely neural: next token prediction à sequential decoding
• Prompting and iterative refinement: elicit better programs from LLM

• Question:
• Can we inject more structure during neural generation process

Possible Next Token by Parser
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

min(input ++ [0])
Partial Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Possible Next Token by Parser
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

min(input ++ [0])
Partial Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Step 1

Possible Next Token by Parser
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

min(input ++ [0])
Partial Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Step 1: Goal is P

‘min’ only appears in the rule N <- ‘min’ ‘(’ L ‘)’

min (L)

P

N

Possible Next Token by Parser
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

min(input ++ [0])
Partial Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Step 1: Goal is P

‘min’ only appears in the rule N <- ‘min’ ‘(’ L ‘)’

min (L)

P

N
The next token could only be ‘(’

Possible Next Token by Parser
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

min(input ++ [0])
Partial Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Step 2: Goal is P

‘min’ ‘(‘ only appears in the rule N <- ‘min’ ‘(’ L ‘)’

min (L)

P

N

Possible Next Token by Parser
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

min(input ++ [0])
Partial Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Step 2: Goal is P

‘min’ ‘(‘ only appears in the rule N <- ‘min’ ‘(’ L ‘)’

min (L)

P

N The next token could only be the first token expanded
from L: ‘input’, ‘[’

Possible Next Token by Parser
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

min(input ++ [0])
Partial Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Step 3: Goal is L

min (L)

P

N

L

input
We can expand L into input, matching the third token

Possible Next Token by Parser
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

min(input ++ [0])
Partial Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Step 3: Goal is L

min (L)

P

N

L

input

We can expand L into input, matching the third token

è Finishing L, next token is ‘)’

Possible Next Token by Parser
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

min(input ++ [0])
Partial Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Step 3: Goal is L

min (L)

P

N

L

input

L

L ++ L

input

We can expand L into input, matching the third token

We can expand L into L + L, where the first L can be expanded
into input, matching the third token

è Finishing L, next token is ‘)’

Possible Next Token by Parser
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

min(input ++ [0])
Partial Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

Step 3: Goal is L

min (L)

P

N

L

input

L

L ++ L

input

We can expand L into input, matching the third token

We can expand L into L + L, where the first L can be expanded
into input, matching the third token

è Finishing L, next token is ‘)’

è Finishing the left L, next token is ‘++’

Possible Next Token by Parser
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

min(input ++ [0])
Partial Program

Token Sequence
[‘min’, ‘(’, ‘input’, ‘++’, ‘[’, ‘0’, ‘]’]

{‘(’}

{‘input’, ‘[’}

{‘)’, ‘++’}

Alternatives of Next Token Filtering

• Problem:
• Given a prefix, find the set of tokens that could be the next

• Alternative problem:
• Given a prefix and a predicted next token, check if the next token is a

plausible completion
• Prefix viability problem / Prefix membership problem
• Given a grammar 𝐺 and a prefix 𝑤, does there exist 𝑥 s.t. 𝑤𝑥 ∈ 𝐿(𝐺)

Algorithms for parsing

• Basic parsing
• Earley parsing: maintains a set of items that implicitly answer the “prefix

membership” question at each position
• CKY (Cocke–Younger–Kasami) parsing: bottom-up finding substrings that

can be turned into abstract syntax trees
• Automaton: convert the grammar into an Automaton, keep an active

state, reject the string if the next token leads to an error state

state = start_of_automaton(grammar)
current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence) / temperature
 for (token_id, logit) in enumerate(logits):
 if not allowed_by(state, token_id):
 logits[token_id] = -inf
 probs = softmax(logits)
 next_token = nucleus_sample_from(probs, P)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
 state = advance(state, next_token)
return output_sequence

Constrained Decoding with Automaton

state = start_of_automaton(grammar)
current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence)…
 for (token_id, logit) in enumerate(logits):
 if not allowed_by(state, token_id):
 logits[token_id] = -inf
 probs = softmax(logits)
 next_token = nucleus_sample_from(probs, P)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
 state = advance(state, next_token)
return output_sequence

Constrained Decoding with Automaton
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’

[‘min’, ‘(’, ‘input’, ‘)’]

state = start_of_automaton(grammar)
current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence)…
 for (token_id, logit) in enumerate(logits):
 if not allowed_by(state, token_id):
 logits[token_id] = -inf
 probs = softmax(logits)
 next_token = nucleus_sample_from(probs, P)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
 state = advance(state, next_token)
return output_sequence

Constrained Decoding with Automaton
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’

[‘min’, ‘(’, ‘input’, ‘)’]

state = start_of_automaton(grammar)
current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence)…
 for (token_id, logit) in enumerate(logits):
 if not allowed_by(state, token_id):
 logits[token_id] = -inf
 probs = softmax(logits)
 next_token = nucleus_sample_from(probs, P)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
 state = advance(state, next_token)
return output_sequence

Constrained Decoding with Automaton
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’

[‘min’, ‘(’, ‘input’, ‘)’]

]

state = start_of_automaton(grammar)
current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence)…
 for (token_id, logit) in enumerate(logits):
 if not allowed_by(state, token_id):
 logits[token_id] = -inf
 probs = softmax(logits)
 next_token = nucleus_sample_from(probs, P)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
 state = advance(state, next_token)
return output_sequence

Constrained Decoding with Automaton
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’

[‘min’, ‘(’, ‘input’, ‘)’]

input
✅

state = start_of_automaton(grammar)
current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence)…
 for (token_id, logit) in enumerate(logits):
 if not allowed_by(state, token_id):
 logits[token_id] = -inf
 probs = softmax(logits)
 next_token = nucleus_sample_from(probs, P)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
 state = advance(state, next_token)
return output_sequence

Constrained Decoding with Automaton
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’

[‘min’, ‘(’, ‘input’, ‘)’]

state = start_of_automaton(grammar)
current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence)…
 for (token_id, logit) in enumerate(logits):
 if not allowed_by(state, token_id):
 logits[token_id] = -inf
 probs = softmax(logits)
 next_token = nucleus_sample_from(probs, P)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
 state = advance(state, next_token)
return output_sequence

Constrained Decoding with Automaton
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’

[‘min’, ‘(’, ‘input’, ‘)’]

state = start_of_automaton(grammar)
current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence)…
 for (token_id, logit) in enumerate(logits):
 if not allowed_by(state, token_id):
 logits[token_id] = -inf
 probs = softmax(logits)
 next_token = nucleus_sample_from(probs, P)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
 state = advance(state, next_token)
return output_sequence

Constrained Decoding with Automaton
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’

[‘min’, ‘(’, ‘input’, ‘)’]

state = start_of_automaton(grammar)
current_sequence = input_tokens
output_sequence = []
for step in 1 .. max_length:
 logits = predict_next_token(current_sequence)…
 for (token_id, logit) in enumerate(logits):
 if not allowed_by(state, token_id):
 logits[token_id] = -inf
 probs = softmax(logits)
 next_token = nucleus_sample_from(probs, P)
 current_sequence += [next_token]
 output_sequence += [next_token]
 if next_token == <EOS>: break
 state = advance(state, next_token)
return output_sequence

Constrained Decoding with Automaton
(Program) P <- L | N

 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’

[‘min’, ‘(’, ‘input’, ‘)’]

Algorithms for parsing

• Basic parsing
• Earley parsing: maintains a set of items that implicitly answer the “prefix

membership” question at each position
• CKY (Cocke–Younger–Kasami) parsing: bottom-up finding substrings that can be

turned into abstract syntax trees
• Automaton: convert the grammar into an Automaton, keep an active state, reject

the string if the next token leads to an error state
• Compiler Parsing

• Batched parsing: takes the entire program and parses
• Interactive / Incremental parsing

• Error-tolerant / resilient parsers; skip until synchronizing symbols (like ;,})
• Keeps tree of interactions; maintain the global AST structure and only create bad

subtrees when there is error

input

)

‘

“

;

[

0.01

0.21

0.26

0.19

0.01

0.02

LLM Predicted
Next TokenPrefix: min(input ++ Prefix Viability

Mask

0

1

0

0

0

1

input

)

‘

“

;

[

0.01

0.21

0.26

0.19

0.01

0.02

LLM Predicted
Next Token

Prefix: min(input ++

Prefix Viability
Mask

0

1

0

0

0

1

× =

input

)

‘

“

;

[

0.01

0.21

0.26

0.19

0.01

0.02

LLM Predicted
Next Token

Prefix: min(input ++

Prefix Viability
Mask

0

1

0

0

0

1

× =

0.01

0

0

0

0

0.02

input

)

‘

“

;

[

0.01

0.21

0.26

0.19

0.01

0.02

LLM Predicted
Next Token

Prefix: min(input ++

Prefix Viability
Mask

0

1

0

0

0

1

× è

softmax

0.49

0.0

0.0

0.0

0.0

0.51

0.01

-inf

-inf

-inf

-inf

0.02

è

input

)

‘

“

;

[

0.01

0.21

0.26

0.19

0.01

0.02

LLM Predicted
Next Token

Prefix: min(input ++

Prefix Viability
Mask

0

1

0

0

0

1

×

0.01

-inf

-inf

-inf

-inf

0.02

è

softmax

0.49

0.0

0.0

0.0

0.0

0.51

(Program) P <- L | N
 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

è

input

)

‘

“

;

[

0.01

0.21

0.26

0.19

0.01

0.02

LLM Predicted
Next Token

Prefix: min(input ++

Prefix Viability
Mask

×

(Program) P <- L | N
 (List) L <- ‘input’
 | ‘[‘ ‘]’
 | ‘[‘ N ‘]’
 | L ‘++’ L
 (Number) N <- ‘len’ ‘(‘ L ‘)’
 | ‘min’ ‘(‘ L ‘)’
 | N ‘+’ N
 | ‘0’ | ‘1’ | ‘2’ | …

0.01

-inf

-inf

-inf

-inf

0.02

è

softmax

0.49

0.0

0.0

0.0

0.0

0.51

è

0

1

0

0

0

1

Constrained Decoding in the Wild

A Syntactic Neural Model for General-Purpose Code Generation, Yin et. al., 2017

A Syntactic Neural Model for General-Purpose Code Generation, Yin et. al., 2017

A Syntactic Neural Model for General-Purpose Code Generation, Yin et. al., 2017

A Syntactic Neural Model for General-Purpose Code Generation, Yin et. al., 2017

Constrained Decoding in the Wild

Abstract Syntax Networks for Code Generation and Semantic Parsing, Rabinovich et. al., 2017

Abstract Syntax Networks for Code Generation and Semantic Parsing, Rabinovich et. al., 2017

Abstract Syntax Networks for Code Generation and Semantic Parsing, Rabinovich et. al., 2017

Abstract Syntax Networks for Code Generation and Semantic Parsing, Rabinovich et. al., 2017

Constrained Decoding in the Wild

Grammar-Aligned Decoding, Park et. al., 2024

Grammar-Aligned Decoding, Park et. al., 2024

Grammar-Aligned Decoding, Park et. al., 2024

Constrained Decoding in the Wild

Monitor-Guided Decoding of Code LMs with Static Analysis of Repository Context, Agrawal et. al., 2023

Monitor-Guided Decoding of Code LMs with Static Analysis of Repository Context, Agrawal et. al., 2023

Monitor-Guided Decoding of Code LMs with Static Analysis of Repository Context, Agrawal et. al., 2023

Monitor-Guided Decoding of Code LMs with Static Analysis of Repository Context, Agrawal et. al., 2023

Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo, Loula et. al., ICLR 2025

Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo, Loula et. al., ICLR 2025

Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo, Loula et. al., ICLR 2025

Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo, Loula et. al., ICLR 2025

Beyond Constrained Decoding
Programmatic Structured Steering

Prompting Is Programming: A Query Language for Large Language Models, Beurer-Kellner et. al., PLDI 2023

Sequential Monte Carlo Steering of Large Language Models using Probabilistic Programs, Lew et. al., 2025

Sequential Monte Carlo Steering of Large Language Models using Probabilistic Programs, Lew et. al., 2025

Summary

• We are building an arsenal of tools to generate good symbolic
code from neural language models
• Natural (Magical) strategies

• Prompting
• Prompt tuning

• Mechanical strategies
• Controlled decoding

• Structural strategies
• Iterative refinement
• Programmatic steering

• Agentic strategies
• External tool use

We have not discussed…

• Syntactic constraints
• Context free grammar
• Regular expressions (Regex)
• Finite state machine; Automaton; how to compile an automaton from CFG
• Algorithms for lexing, parsing, compile a parsing, how to write AST

• Steering libraries
• LMQL
• Guidance
• Langchain
• DSPY

Week 4

• Assignment 1
• https://github.com/machine-programming/assignment-1
• Accepting late submissions

• Assignment 2
• https://github.com/machine-programming/assignment-2
• Due in two weeks; sending out another set of API keys; autograders

• Oral presentation starting from week 7
• Sign-up sheet going out this week

• Feedback Questionnaire
• Sending out this week
• +0.5% of your overall grade

https://github.com/machine-programming/assignment-1
https://github.com/machine-programming/assignment-1
https://github.com/machine-programming/assignment-1
https://github.com/machine-programming/assignment-1
https://github.com/machine-programming/assignment-1
https://github.com/machine-programming/assignment-1
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2

