
Machine Programming
Lecture 9 – Agentic Frameworks and Model Context Protocol

Ziyang Li

Logistics – Week 5

• Assignment 2
• https://github.com/machine-programming/assignment-2
• Due next Thursday (Oct 2nd)
• Expected to take quite some time, so please start working on it early

• Feedback form
• Follow this link to fill the questionnaire; worth 1% of extra credit
• Thanks to those who submitted already!
• Help us make the course better!

https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://docs.google.com/forms/d/e/1FAIpQLScHNqpYibMI-BBbHTqAMzAc1A5UjoOVCWQNlBpcmGVY0Fib2A/viewform?usp=dialog

Dimensions in Program Synthesis

Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?

Synthesis Strategy
- How do we find such a program?

The Course So Far
Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?

Synthesis Strategy
- How do we find such a program?

1. Examples
2. Types
3. Functional Specifications
4. Natural Language

General Purpose Programming Language
Python / Java / C / Rust / …

Data-Driven Approaches
- Next token prediction, greedy decoding, controlled decoding
- Prompting, Iterative Refinement

Enumeration
- Enumerating all programs with a grammar
- Bottom-up vs top-down

Domain Specific Languages

The Course So Far
Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?

Synthesis Strategy
- How do we find such a program?

1. Examples
2. Types
3. Functional Specifications
4. Natural Language

General Purpose Programming Language
Python / Java / C / Rust / …

Data-Driven Approaches
- Next token prediction, greedy decoding, controlled decoding
- Prompting, Iterative Refinement

Enumeration
- Enumerating all programs with a grammar
- Bottom-up vs top-down

Domain Specific Languages

Today
Behavioral Specification
- What should the program do?

Structural Specification
- What is the space of the programs?Synthesis Strategy

- How do we find such a program?

1. Examples
2. Types
3. Functional Specifications
4. Natural Language

General Purpose Programming Language
Python / Java / C / Rust / …Agentic Frameworks

- Tool Use, MCP

High Level Picture

Space of all
the strings

Desired Program

Space of all syntactically
correct programs

Space of all type checked
programs

Space of all
programs that can

satisfy all examples

Functional
Specification

High Level Picture

Space of all
the strings

Desired Program

Space of all syntactically
correct programs

Space of all type checked
programs

Space of all
programs that can

satisfy all examples

Functional
Specification

Agentic Iterative Refinement

High Level Picture

Single-step
Prompting

Multi-step
Prompting

Iterative
Refinement

Agentic
Framework

Single-step Prompting

Write this function:
 def add(a, b):

def add(a, b): return a + b

You

Language Model Output

Prompting with a Conversation

f"""
Write this function:
 def add(a, b):
Output:
 def add(a, b): return a + b

Write this function:
 def reverse(s: str) -> str:
Output:
 def reverse(s: str) -> str:
 output = ""
 for c in s:
 output = c + output
 return output

Write this function:
 def is_palindrome(s: str) -> bool:
"""

Write this function:
 def add(a, b):

def add(a, b): return a + b

You

Faked Language Model Output

Write this function:
 def reverse(s: str)…

You

def reverse(s: str) -> str:
 output = ""
 for c in s:
 output = c + output
 return output

Faked Language Model Output

Write this function:
 def is_palindrome(s: str)

You

Prompting with a Conversation
Write this function:
 def add(a, b):

def add(a, b): return a + b

You

Faked Language Model Output

Write this function:
 def reverse(s: str)…

You

def reverse(s: str) -> str:
 output = ""
 for c in s:
 output = c + output
 return output

Faked Language Model Output

Write this function:
 def is_palindrome(s: str)

You

{
 "messages": [
 { "role": "user",
 ”parts": ["Write this function:\ndef add(a, b):”] },
 { "role": "assistant",
 ”parts": ["def add(a, b): return a + b”] },
 { "role": "user",
 ”parts": ["Write this function:\ndef reverse(s: str)…”] },
 { "role": "assistant",
 ”parts": ["def reverse(s: str) -> str:\n output = \"\"\n
 for c in s:\n output = c + output\n
 return output”] },
 { "role": "user",
 ”parts": ["Write this function:\n
 def is_palindrome(s: str)”] }
]
}

è

Prompting with a Conversation

Write this function:
 def add(a, b):

def add(a, b): return a + b

You

Language Model

Write this function:
 def is_palindrome(s: str)

You

{
 "messages": [
 { "role": ”system",
 ”parts": [”You are a senior software engineer from…”] },
 { "role": "user",
 ”parts": ["Write this function:\ndef add(a, b):”] },
 { "role": "assistant",
 ”parts": ["def add(a, b): return a + b”] },
 { "role": "user",
 ”parts": ["Write this function:\ndef reverse(s: str)…”] },
 { "role": "assistant",
 ”parts": ["def reverse(s: str) -> str:\n output = \"\"\n
 for c in s:\n output = c + output\n
 return output”] },
 { "role": "user",
 ”parts": ["Write this function:\n
 def is_palindrome(s: str)”] }
]
}

è

You are a senior software engineer from
a top-tier company…

System

…

Prompting with a Conversation

Write this function:
 def add(a, b):

def add(a, b): return a + b

You

Language Model

Write this function:
 def is_palindrome(s: str)

You

{
 "messages": [
 { "role": ”system",
 ”parts": [”You are a senior software engineer from…”] },
 { "role": "user",
 ”parts": ["Write this function:\ndef add(a, b):”] },
 { "role": "assistant",
 ”parts": ["def add(a, b): return a + b”] },
 { "role": "user",
 ”parts": ["Write this function:\ndef reverse(s: str)…”] },
 { "role": "assistant",
 ”parts": ["def reverse(s: str) -> str:\n output = \"\"\n
 for c in s:\n output = c + output\n
 return output”] },
 { "role": "user",
 ”parts": ["Write this function:\n
 def is_palindrome(s: str)”] }
]
}

è

You are a senior software engineer from
a top-tier company…

System

…

client.chat.completions.create(
 model="gpt-4o-mini",
 messages=messages
)

Prompting with a Conversation: Behind the Scene

{
 "messages": [
 { "role": ”system",
 ”parts": [”You are a senior software engineer from…”] },
 { "role": "user",
 ”parts": ["Write this function:\ndef add(a, b):”] },
 { "role": "assistant",
 ”parts": ["def add(a, b): return a + b”] },
 { "role": "user",
 ”parts": ["Write this function:\ndef reverse(s: str)…”] },
 { "role": "assistant",
 ”parts": ["def reverse(s: str) -> str:\n output = \"\"\n
 for c in s:\n output = c + output\n
 return output”] },
 { "role": "user",
 ”parts": ["Write this function:\n
 def is_palindrome(s: str)”] }
]
}

<system>
You are a senior software engineer from…
<user>
Write this function:
 def add(a, b):
<assistant>
def add(a, b): return a + b
<user>
Write this function:
 def reverse(s: str)…
<assistant>
def reverse(s: str) -> str:
 output = “”
 for c in s:
 output = c + output
 return output
<user>
Write this function:
 def is_palindrome(s: str)

è

Special Tokens denoting Roles

Chain-of-Thought Prompting

You are tasked to write this function:
 def min_cost_k_perio…(x, …):
Before writing it, please first think step-by-step.
analyze what needs to be done and sketch out a
piece of pseudo code…

I will write the function
min_cost_k_periodic_segmentation to the
specified requirements. The problem appears
to be a dynamic programming challenge.

You

Language Model (Actual Generation)

Good. Please go ahead and write the function.

You

def min_cost_k_perio…(x, …):
 …

Language Model (Actual Generation)

Chain-of-Thought Prompting

You are tasked to write this function:
 def min_cost_k_perio…(x, …):
Before writing it, please first think step-by-
step. analyze what needs to be done and
sketch out a piece of pseudo code…

I will write the function
min_cost_k_periodic_segmentation to
the specified requirements. The problem
appears to be a dynamic programming
challenge.

You

Language Model (Actual Generation)

Good. Please go ahead and write the
function.

You

def min_cost_k_perio…(x, …):
 …

Language Model (Actual Generation)

<system>
You are a senior software engineer from…
<user>
You are tasked to write this function:
 def min_cost_k_perio…(x, …):
Before writing it, please first think step-
by-step. analyze what needs to be done and
sketch out a piece of pseudo code…
<assistant>
I will write the function
min_cost_k_periodic_segmentation to the
specified requirements. The problem appears
to be a dynamic programming challenge.
<user>
Good. Please go ahead and write the
function.

è

Self-Reflection Prompting
You are tasked to write this function:
 def min_cost_k_perio…(x, …):
Please write the function according to the
specification and the input/output examples.

I will analyze the function that I just wrote…

You

Language Model (Actual Generation)

Please now reflect what you have written. Try
simulate what would happen if we pass in an
example and see whether the result is expected.

You

def min_cost_k_perio…(x, …): …

Language Model (Actual Generation)

Now please use your analysis to correct the
function that you wrote; if nothing wrong, just
copy and paste the function you had generated.

You

Self-Reflection Prompting
You are tasked to write this function:
 def min_cost_k_perio…(x, …):
Please write the function according to the
specification and the input/output examples.

I will analyze the function that I just wrote…

You

Language Model (Actual Generation)

Please now reflect what you have written. Try
simulate what would happen if we pass in an
example and see whether the result is expected.

You

def min_cost_k_perio…(x, …): …

Language Model (Actual Generation)

Now please use your analysis to correct the
function that you wrote; if nothing wrong, just
copy and paste the function you had generated.

You

<user>
You are tasked to write this function:
 def min_cost_k_perio…(x, …):
Please write the function according to the
specification and the input/output
examples.
<assistant>
def min_cost_k_perio…(x, …): …
<user>
Please now reflect what you have written.
Try simulate what would happen if we pass
in an example and see whether the result is
expected.
<assistant>
I will analyze the function that I just
wrote…
<user>
Now please use your analysis to correct the
function that you wrote; if nothing wrong,
just copy and paste the function you had
generated.
<assistant>
...

è

Iterative Refinement

You are tasked to write this function:
 def min_cost_k_perio…(x, …):

You

You passed 3/5 test cases; the failed test cases…

You (After running the test cases)

def min_cost_k_perio…(x, …): …

Language Model

def min_cost_k_perio…(x, …): …

Language Model

You passed 4/5 test cases; the failed test cases…

You (After running the test cases)

def min_cost_k_perio…(x, …): …

Language Model

Iterative Refinement

You are tasked to write this function:
 def min_cost_k_perio…(x, …):

You

You passed 3/5 test cases; the failed test cases…

You (After running the test cases)

def min_cost_k_perio…(x, …): …

Language Model

def min_cost_k_perio…(x, …): …

Language Model

You passed 4/5 test cases; the failed test cases…

You (After running the test cases)

def min_cost_k_perio…(x, …): …

Language Model

<user>
You are tasked to write this function:
 def min_cost_k_perio…(x, …):
<assistant>
def min_cost_k_perio…(x, …): …
<user>
You passed 3/5 test cases; the failed test
cases…
<assistant>
def min_cost_k_perio…(x, …): …
<user>
You passed 4/5 test cases; the failed test
cases…
<assistant>
def min_cost_k_perio…(x, …): …

è

Prompting Pipelines

User

Language
Model

Zero-shot
Prompting

Prompting Pipelines

User

Language
Model

User

Language
Model

Zero-shot
Prompting

Few-shot
Prompting

Prompting Pipelines

User

Language
Model

User

Language
Model

Zero-shot
Prompting

Few-shot
Prompting

User

Language
Model

Chain-of-thought
Prompting

Prompting Pipelines

User

Language
Model

User

Language
Model

User

Language
Model

Zero-shot
Prompting

Few-shot
Prompting

Self-Reflection
Prompting

User

Language
Model

Chain-of-thought
Prompting

Prompting Pipelines

User

Language
Model

User

Language
Model

User

Language
Model

User

Language
Model

Zero-shot
Prompting

Few-shot
Prompting

Self-Reflection
Prompting

Iterative
Refinement

…

User

Language
Model

Chain-of-thought
Prompting

🛠

Compilers, Linters, Testers, Debuggers, Verifiers

ß User

Prompting Pipelines

User

Language
Model

User

Language
Model

User

Language
Model

User

Language
Model

Zero-shot
Prompting

Few-shot
Prompting

Self-Reflection
Prompting

Iterative
Refinement

…

User

Language
Model

Chain-of-thought
Prompting

🛠

Prompting Pipelines

• User holds the responsibility to
• Send requests to LLM
• Keep a history of dialogue
• Invoke the tools and format the feedback

User

Language
Model

User

Language
Model

User

Language
Model

User

Language
Model

…

User

Language
Model

🛠

Agentic Pipelines

• Agent holds the responsibility to
• Send requests to LLM
• Keep a history of dialogue
• Invoke the tools and format the feedback

Agent

Language
Model

Agent

Language
Model

Agent

Language
Model

Agent

Language
Model

…

Agent

Language
Model

🛠

User

agency (noun)

• The capacity to act:
• Definition: The ability of an individual or entity to make choices and act on

them independently.
• Example: “Children gradually develop their own agency in deciding what

they want to study.”

LLM’s agency (noun)

• The capacity to act:
• Definition: The ability of an LLM to make choices and act on them

independently.
• Example: “LLM gradually develop their own agency in deciding what they

want to study.”

USER

LLM

(GPT-5 generated figure, which needs some corrections…)

Definitions of Entities

• User (human, end-user)
• Agent (a computer program)
• LM (a neural language model)
• Environment (the world)
• Tool (access point to the world)

Environment

Definitions of Entities

• User (human, end-user)
• Agent (a computer program)
• LM (a neural language model)
• Environment (the world)
• Tool (access point to the world)

User

Agent

LM

Tool

Environment

Definitions of Entities

• User (human, end-user)
• Agent (a computer program)
• LM (a neural language model)
• Environment (the world)
• Tool (access point to the world)

User

Agent

LM

Tool

💬

Environment

Definitions of Entities

• User (human, end-user)
• Agent (a computer program)
• LM (a neural language model)
• Environment (the world)
• Tool (access point to the world)

User

Agent

LM

Tool

💬

Environment

Definitions of Entities

• User (human, end-user)
• Agent (a computer program)
• LM (a neural language model)
• Environment (the world)
• Tool (access point to the world)

User

Agent

LM

Tool

🫵

Environment

Definitions of Entities

• User (human, end-user)
• Agent (a computer program)
• LM (a neural language model)
• Environment (the world)
• Tool (access point to the world)

User

Agent

LM

Tool

🔨

Environment

Definitions of Entities

• User (human, end-user)
• Agent (a computer program)
• LM (a neural language model)
• Environment (the world)
• Tool (access point to the world)

User

Agent

LM

Tool

🛠

Environment

Definitions of Entities

• User (human, end-user)
• Agent (a computer program)
• LM (a neural language model)
• Environment (the world)
• Tool (access point to the world)

User

Agent

LM

Tool

✅

Environment

Definitions of Entities

• User (human, end-user)
• Agent (a computer program)
• LM (a neural language model)
• Environment (the world)
• Tool (access point to the world)

User

Agent

LM

Tool

✅

Environment

Definitions of Entities

• User (human, end-user)
• Agent (a computer program)
• LM (a neural language model)
• Environment (the world)
• Tool (access point to the world)

User

Agent

LM

Tool

✅

Environment

Definitions of Entities

• User (human, end-user)
• Agent (a computer program)
• LM (a neural language model)
• Environment (the world)
• Tool (access point to the world)

User

Agent

LM

Tool

💬✅

Environment

Definitions of Entities

• User (human, end-user)
• Agent (a computer program)
• LM (a neural language model)
• Environment (the world)
• Tool (access point to the world)

User

Agent

LM

Tool

💬✅

Environment

Definitions of Entities

• User (human, end-user)
• Agent (a computer program)
• LM (a neural language model)
• Environment (the world)
• Tool (access point to the world)

User

Agent

LM

Tool

🤗

LLM Agent

Environment

Definitions of Entities

• User (human, end-user)
• Agent (a computer program)
• LM (a neural language model)
• Environment (the world)
• Tool (access point to the world)

User

Agent

LM

Tool

🤗

Agentic Framework

Environment

Definitions of Entities

• User (human, end-user)
• Agent (a computer program)
• LM (a neural language model)
• Environment (the world)
• Tool (access point to the world)

User

Agent

LM

Tool

🤗

Foundations of Tool Use

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick et. al., 2023

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick et. al., 2023

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick et. al., 2023

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick et. al., 2023

Toolformer: Language Models Can Teach Themselves to Use Tools, Schick et. al., 2023

Foundations of Tool Use

Exemplars of Tool Use

Implication for Program Synthesis

Environment

User

Agent

LM

Tool

Implication for Program Synthesis

Environment

User

Agent

LM

Tool

Implication for Program Synthesis

Environment

User

Agent

LM

Tool

Implication for Program Synthesis

Environment

User

Agent

LM

Tool

Implication for Program Synthesis

Environment

User

Agent

LM

Tool

Implication for Program Synthesis

• Less input required from user
• Agent pre-defines a set of general

prompts for typical synthesis use
cases;
• Feedback can come from tools

and environments.

• Less responsibility from user
• Agent exposes the set of tools to

language models;
• Agent takes the responsibility to

invoke the tools and process the
results.

Environment

User

Agent

LM

Tool

Potential Achievements for Program Synthesis

• Automated testing
• Writing and run new test cases

• Repository level reasoning
• Through file systems, read

multiple files in the repository

• Adaptive iterative refinement
• Dynamically choose which tool

to run (compiler, linter, test, etc.)
• Creative ways to debug: delta

debugging, tracing, etc.

Environment

User

Agent

LM

Tool

Design and Implementation of Agentic Frameworks

Design and Implementation of Agentic Frameworks

Environment

User

Agent

LM

Tool

Design and Implementation of Agentic Frameworks

Environment

User

Agent

LM

Tool

Write this function for me
def add(a: int, b: int) -> int:

Design and Implementation of Agentic Frameworks

Environment

User

Agent

LM

Tool

{
 "messages": [
 {"role": ”system",
 ”parts": [
 ”…Here are the tools available to call…”] },
 {"role": "user",
 ”parts": ["Write this function:\n…”] },]
}

Write this function for me
def add(a: int, b: int) -> int:

Design and Implementation of Agentic Frameworks

Environment

User

Agent

LM

Tool

{
 "messages": [
 {"role": ”system",
 ”parts": [
 ”…Here are the tools available to call…”] },
 {"role": "user",
 ”parts": ["Write this function:\n…”] },]
}

Write this function for me
def add(a: int, b: int) -> int:

”{’tool_name’: ‘bash’, ‘function’:…”

Design and Implementation of Agentic Frameworks

Environment

User

Agent

LM

Tool

{
 "messages": [
 {"role": ”system",
 ”parts": [
 ”…Here are the tools available to call…”] },
 {"role": "user",
 ”parts": ["Write this function:\n…”] },]
}

Write this function for me
def add(a: int, b: int) -> int: 🛠

Design and Implementation of Agentic Frameworks

Environment

User

Agent

LM

Tool

{
 "messages": [
 {"role": ”system",
 ”parts": [
 ”…Here are the tools available to call…”] },
 {"role": "user",
 ”parts": ["Write this function:\n…”] },]
}

Write this function for me
def add(a: int, b: int) -> int:

{
 "messages": [
 {"role": ”system",
 ”parts": [
 ”…Here are the tools available to call…”] },
 {"role": "user",
 ”parts": ["Write this function:\n…”] },
 {"role": ”assistant",
 ”parts": [”{’tool_name’: ‘bash’,‘function’:…”] },
 {"role": ”tool_result",
 ”parts": [”execution success”] },
]
}

Design and Implementation of Agentic Frameworks

Environment

User

Agent

LM

Tool

{
 "messages": [
 {"role": ”system",
 ”parts": [
 ”…Here are the tools available to call…”] },
 {"role": "user",
 ”parts": ["Write this function:\n…”] },]
}

Write this function for me
def add(a: int, b: int) -> int:

{
 "messages": [
 {"role": ”system",
 ”parts": [
 ”…Here are the tools available to call…”] },
 {"role": "user",
 ”parts": ["Write this function:\n…”] },
 {"role": ”assistant",
 ”parts": [”{’tool_name’: ‘bash’,‘function’:…”] },
 {"role": ”tool_result",
 ”parts": [”execution success”] },
 {"role": ”assistant",
 ”parts": [”def add(a: int, …)”] },
]
}

Design and Implementation of Agentic Frameworks

Environment

User

Agent

LM

Tool

{
 "messages": [
 {"role": ”system",
 ”parts": [
 ”…Here are the tools available to call…”] },
 {"role": "user",
 ”parts": ["Write this function:\n…”] },]
}

Write this function for me
def add(a: int, b: int) -> int:

{
 "messages": [
 {"role": ”system",
 ”parts": [
 ”…Here are the tools available to call…”] },
 {"role": "user",
 ”parts": ["Write this function:\n…”] },
 {"role": ”assistant",
 ”tool_call": {”name”: “bash”, ”args”: [...]} },
 {"role": ”tool_result",
 ”parts": [”execution success”] },
 {"role": ”assistant",
 ”parts": [”def add(a: int, …)”] },
]
}

def add(a: int, b: int)
-> int:
 return a + b

Common Protocol for Agentic Framework
• Protocol
• A protocol is a precisely defined set of rules and formats that govern how

entities in a system communicate and interact.

• Having a protocol provides the following benefits
• Tools are easier to develop

• All tools expose themselves to the agent via a unified format
• All tools respond to the agent via a unified format
• Online registry of tools; Similar to pip (Python’s package manager)

• Models are easier to develop
• Can be trained/fine-tuned on this unified format to provide maximum adaptability

• Agents are easier to develop
• Assume all tools and models agree on the same format
• Prompts and pipelines designed for this format

Model Context Protocol (MCP)

Environment

User

Agent

LM

Tool

Model Context Protocol (MCP)

Environment

User

Agent

LM

Tool

MCP
Client

MCP
Server Tool

Tool

Model Context Protocol (MCP)

Environment

User

Agent

LM

Tool

MCP
Client

MCP
Server Tool

Tool

Tool and Environment SideUser and LLM Side

https://github.com/modelcontextprotocol/servers

https://github.com/modelcontextprotocol/servers

https://github.com/modelcontextprotocol/servers

https://github.com/modelcontextprotocol/servers

Logistics – Week 5

• Assignment 2
• https://github.com/machine-programming/assignment-2
• Due next Thursday (Oct 2nd)
• Expected to take quite some time, so please start working on it early

• Feedback form
• Follow this link to fill the questionnaire; worth 1% of extra credit
• Thanks to those who submitted already!
• Help us make the course better!

https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://github.com/machine-programming/assignment-2
https://docs.google.com/forms/d/e/1FAIpQLScHNqpYibMI-BBbHTqAMzAc1A5UjoOVCWQNlBpcmGVY0Fib2A/viewform?usp=dialog

